Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cogn Neurodyn ; 6(2): 169-83, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22511913

RESUMEN

The neural representation of motion aftereffects induced by various visual flows (translational, rotational, motion-in-depth, and translational transparent flows) was studied under the hypothesis that the imbalances in discharge activities would occur in favor in the direction opposite to the adapting stimulation in the monkey MST cells (cells in the medial superior temporal area) which can discriminate the mode (i.e., translational, rotational, or motion-in-depth) of the given flow. In single-unit recording experiments conducted on anaesthetized monkeys, we found that the rate of spontaneous discharge and the sensitivity to a test stimulus moving in the preferred direction decreased after receiving an adapting stimulation moving in the preferred direction, whereas they increased after receiving an adapting stimulation moving in the null direction. To consistently explain the bidirectional perception of a transparent visual flow and its unidirectional motion aftereffect by the same hypothesis, we need to assume the existence of two subtypes of MST D cells which show directionally selective responses to a translational flow: component cells and integration cells. Our physiological investigation revealed that the MST D cells could be divided into two types: one responded to a transparent flow by two peaks at the instances when the direction of one of the component flow matched the preferred direction of the cell, and the other responded by a single peak at the instance when the direction of the integrated motion matched the preferred direction. In psychophysical experiments on human subjects, we found evidence for the existence of component and integration representations in the human brain. To explain the different motion perceptions, i.e., two transparent flows during presentation of the flows and a single flow in the opposite direction to the integrated flows after stopping the flow stimuli, we suggest that the pattern-discrimination system can select the motion representation that is consistent with the perception of the pattern from two motion representations. We discuss the computational aspects related to the integration of component motion fields.

2.
Neural Netw ; 9(8): 1357-1365, 1996 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12662539

RESUMEN

We studied the LTP inducing factors using temporally and spatially modulated stimuli given to the hippocampal neural network. It was found that when the spatial factors were maintained to be constant the positive correlation in the successive inter-stimulus intervals contributes to produce larger LTP. On the other hand, if the temporal factors are kept constant, the spatial coincidence contributes to produce larger LTP. We propose a learning rule by which these experimental results can be consistently interpreted. Copyright 1996 Elsevier Science Ltd.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...