Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (201)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38047569

RESUMEN

The basic organizational unit of eukaryotic chromatin is the nucleosome core particle (NCP), which comprises DNA wrapped ~1.7 times around a histone octamer. Chromatin is defined as the entity of NCPs and numerous other protein complexes, including transcription factors, chromatin remodeling and modifying enzymes. It is still unclear how these protein-DNA interactions are orchestrated at the level of specific genomic loci during different stages of the cell cycle. This is mainly due to the current technical limitations, which make it challenging to obtain precise measurements of such dynamic interactions. Here, we describe an improved method combining site-specific recombination with an efficient single-step affinity purification protocol to isolate a single-copy gene locus of interest in its native chromatin state. The method allows for the robust enrichment of the target locus over genomic chromatin, making this technique an effective strategy for identifying and quantifying protein interactions in an unbiased and systematic manner, for example by mass spectrometry. Further to such compositional analyses, native chromatin purified by this method likely reflects the in vivo situation regarding nucleosome positioning and histone modifications and is, therefore, amenable to further structural and biochemical analyses of chromatin derived from virtually any genomic locus in yeast.


Asunto(s)
Cromatina , Proteínas de Saccharomyces cerevisiae , Cromatina/genética , Cromatina/metabolismo , Saccharomyces cerevisiae/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Nucleic Acids Res ; 51(22): 12303-12324, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37956271

RESUMEN

Stochastic origin activation gives rise to significant cell-to-cell variability in the pattern of genome replication. The molecular basis for heterogeneity in efficiency and timing of individual origins is a long-standing question. Here, we developed Methylation Accessibility of TArgeted Chromatin domain Sequencing (MATAC-Seq) to determine single-molecule chromatin accessibility of four specific genomic loci. MATAC-Seq relies on preferential modification of accessible DNA by methyltransferases combined with Nanopore-Sequencing for direct readout of methylated DNA-bases. Applying MATAC-Seq to selected early-efficient and late-inefficient yeast replication origins revealed large heterogeneity of chromatin states. Disruption of INO80 or ISW2 chromatin remodeling complexes leads to changes at individual nucleosomal positions that correlate with changes in their replication efficiency. We found a chromatin state with an accessible nucleosome-free region in combination with well-positioned +1 and +2 nucleosomes as a strong predictor for efficient origin activation. Thus, MATAC-Seq identifies the large spectrum of alternative chromatin states that co-exist on a given locus previously masked in population-based experiments and provides a mechanistic basis for origin activation heterogeneity during eukaryotic DNA replication. Consequently, our single-molecule chromatin accessibility assay will be ideal to define single-molecule heterogeneity across many fundamental biological processes such as transcription, replication, or DNA repair in vitro and ex vivo.


Asunto(s)
Origen de Réplica , Saccharomyces cerevisiae , Cromatina/genética , ADN , Replicación del ADN , Nucleosomas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
J Synchrotron Radiat ; 28(Pt 4): 1166-1173, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34212880

RESUMEN

The human cell nucleus serves as an important organelle holding the genetic blueprint for life. In this work, X-ray ptychography was applied to assess the masses of human cell nuclei using its unique phase shift information. Measurements were carried out at the I13-1 beamline at the Diamond Light Source that has extremely large transverse coherence properties. The ptychographic diffractive imaging approach allowed imaging of large structures that gave quantitative measurements of the phase shift in 2D projections. In this paper a modified ptychography algorithm that improves the quality of the reconstruction for weak scattering samples is presented. The application of this approach to calculate the mass of several human nuclei is also demonstrated.


Asunto(s)
Núcleo Celular/ultraestructura , Microscopía de Contraste de Fase/métodos , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Sincrotrones , Difracción de Rayos X , Rayos X
4.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34206020

RESUMEN

Three dimensional (3D) ultra-structural imaging is an important tool for unraveling the organizational structure of individual chromosomes at various stages of the cell cycle. Performing hitherto uninvestigated ultra-structural analysis of the human genome at prophase, we used serial block-face scanning electron microscopy (SBFSEM) to understand chromosomal architectural organization within 3D nuclear space. Acquired images allowed us to segment, reconstruct, and extract quantitative 3D structural information about the prophase nucleus and the preserved, intact individual chromosomes within it. Our data demonstrate that each chromosome can be identified with its homolog and classified into respective cytogenetic groups. Thereby, we present the first 3D karyotype built from the compact axial structure seen on the core of all prophase chromosomes. The chromosomes display parallel-aligned sister chromatids with familiar chromosome morphologies with no crossovers. Furthermore, the spatial positions of all 46 chromosomes revealed a pattern showing a gene density-based correlation and a neighborhood map of individual chromosomes based on their relative spatial positioning. A comprehensive picture of 3D chromosomal organization at the nanometer level in a single human lymphocyte cell is presented.


Asunto(s)
Cromosomas/genética , Linfocitos/citología , Mitosis/genética , Intercambio de Cromátides Hermanas/genética , Núcleo Celular/genética , Cromosomas/ultraestructura , Humanos , Cariotipificación , Linfocitos/ultraestructura , Microscopía Electrónica de Rastreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...