Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(17): 15450-15457, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37151528

RESUMEN

This study reports the synthesis of ferric vanadate (FeVO4) via a facile hydrothermal method, focusing on demonstrating its exceptional electrochemical (EC) properties on detecting low-density ascorbic acid (AA). The phase purity, crystallinity, structure, morphology, and chemical compositional properties were characterized by employing X-ray diffraction, energy-dispersive X-ray spectroscopy, scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy techniques. EC impedance spectroscopy and cyclic voltammetry techniques were also adopted in order to assess the EC response of a FeVO4-modified glassy carbon electrode for sensing AA at room temperature. The AA concentration range adopted in this experiment is 0.1-0.3 mM at a working electric potential of -0.13 V. The result showed functional excellence of this material for the EC determination of AA with good stability and reproducibility, promising its potentiality in connection with relevant sensing applications.

2.
Anal Chim Acta ; 1259: 341204, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37100479

RESUMEN

Local air and water should be first priority to understand the environment of any area. Different categories of contaminants behave like bottleneck situation in collection and analysis of data about abiotic factors for the understanding and resolving the environmental issues. In digital age the emerging nano technology enroll its role to meet the needs of hour. Due to increase in pesticides residues, the global health threats are on bloom because it inhibits the functionality of acetylcholinesterase (AChE) enzyme. Smart nanotechnology based system can tackle this issue and sense the pesticides residues in environment and vegetables as well. Here Au@ZnWO4 composite is reported, for accurate detection of pesticides residues in biological food and environmental samples. The fabricated unique nanocomposite was characterized by SEM, FTIR, XRD and EDX. The characterized material used for the electrochemical detection of organophosphate pesticide (chlorpyrifos), with 1 pM LoD at a signal to noise ratio of 3. The main concern of study is to help out in disease prevention, food safety and ecosystem protection.


Asunto(s)
Insecticidas , Residuos de Plaguicidas , Plaguicidas , Residuos de Plaguicidas/análisis , Plaguicidas/análisis , Acetilcolinesterasa/química , Ecosistema , Insecticidas/análisis
3.
Environ Sci Pollut Res Int ; 28(27): 35911-35923, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33683584

RESUMEN

We have synthesized BiVO4/Ti3C2 nanocomposite via a low-cost hydrothermal method and investigate its photocatalytic degradation activity against monoazo (methyl orange) and diazo dye (Congo red) in an aqueous solution under visible light. The physiochemical characterization exhibited that the addition of MXene in pristine BiVO4 nanocomposite led to an increase in specific surface area and reduction in optical band gap energy. MXene also helps in enhancing visible light response via a higher electron-hole pair generation rate and long lifetime. The synthesized BiVO4/Ti3C2 heterojunction composite exhibited 99.5 % degradation efficiency within 60 min for Congo red and 99.1 % for methyl orange solution in 130 min owed to a large specific surface area (1.79 m2/g), reduced band gap (1.99 eV), and low recombination rate of charge carriers. The chemical mechanism for BiVO4/Ti3C2 nanocomposite proposes that Ti3C2 role-plays as electron capture because of the higher potential of MXenes, tuning band gap energy which paves the way to excellent photocatalytic action. This work opens a new basis for developing Ti3C2 based promising and inexpensive co-catalyst for efficient solar utilization in photocatalytic-related applications in the future.


Asunto(s)
Bismuto , Titanio , Luz , Vanadatos
4.
J Biomed Mater Res B Appl Biomater ; 109(10): 1563-1577, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33586913

RESUMEN

Safe inorganic nanomaterials are tremendously used for diagnosis and therapies. However, essential processing in the microbiological environment changed the physical properties and in situ degradability, which is evaluated meticulously. In this research article, bare, Polyethylene glycol, and citrate coated manganese doped iron oxide nanoparticles are synthesized through the coprecipitation route. Structural, magnetic, optical, and morphological analyses are performed through different characterization tools. X-ray diffraction confirmed the formation of single-phase FeMnO3 with a crystallite size of 48.91 nm. Vibrating sample magnetometer analysis confirmed the formation of soft ferromagnetic behavior of bare and coated nanoparticles (NPs). Scanning electron microscopy and transmission electron microscopy confirmed the formation of spherical shaped nanoparticles. Single-dose in vivo acute toxicity testing is performed through the intraperitoneal route of administration on groups of healthy albino rats. Elevated enzyme levels of kidney and liver are observed at day 1 but a transient decrease is observed at later stages. Through optical follow-up, degradation effects are studied by adding prepared NPs in lysosomal like medium. Finally, metabolization of degraded products based on manganese/iron ions is studied by adding apoferritin into a lysosome like solution. These studies showed partial storage of manganese ions from NPs, while no substantial transfer is observed in the case of manganese salt.


Asunto(s)
Nanopartículas Magnéticas de Óxido de Hierro , Animales , Ratas , Biotransformación , Ácido Cítrico/química , Ferritinas/química , Riñón , Hígado , Nanopartículas Magnéticas de Óxido de Hierro/química , Microscopía Electrónica de Transmisión , Polietilenglicoles/química , Difracción de Rayos X
5.
RSC Adv ; 11(22): 13105-13118, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35423899

RESUMEN

The present study reports trigonal phase molybdenum disulfide quantum dots (MoS2/QDs)-decorated (Bi1-x Fe x )VO4 composite heterostructures. Initially, (Bi1-x Fe x )VO4 heterostructure nanophotocatalysts were synthesized through the hydrothermal method decorated with 1T-MoS2 via a sonication process. 1T-MoS2@(Bi1-x Fe x )VO4 heterostructures were characterized in detail for phase purity and crystallinity using XRD and Raman spectroscopy. The Raman mode evaluation indicated monoclinic, mixed monoclinic-tetragonal and tetragonal structure development with increasing Fe concentration. For physiochemical properties, SEM, EDX, XPS, PL, EPR, UV-visible and BET techniques were applied. The optical energy band gaps of 1T-MoS2@(Bi1-x Fe x )VO4 heterostructures were calculated using the Tauc plot method. It shows a blue shift initially within a monoclinic structure then a red shift with an increase of Fe concentration. 1T-MoS2@(Bi40Fe60)VO4 with 2 wt% of 1T-MoS2-QDs carrying a mixed phase exhibited higher photocatalytic activity. The enhanced photocatalytic activity is attributed to the higher electron transportation from (Bi1-x Fe x )VO4 surface onto 1T-MoS2 surface, consequently blocking the fast electron-hole recombination within (Bi1-x Fe x )VO4. 1T-MoS2 co-catalyst interaction with (Bi1-x Fe x )VO4 enhanced the light absorption in the visible region. The close contact of small 1T-MoS2-QDs with (Bi1-x Fe x )VO4 develops a high degree of crystallinity, with fewer defects showing mesoporous/nanoporous structures within the heterostructures which allows more active sites. Herein, the mechanism involved in the synthesis of heterostructures and optimum conditions for photocatalytic degradation of crystal violet dye are explored and discussed thoroughly.

6.
RSC Adv ; 8(42): 23489-23498, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35540250

RESUMEN

A BiVO4/FeVO4 nanocomposite photocatalyst was successfully synthesized via a hydrothermal method. The prepared heterojunction photocatalyst was characterized physically and chemically using XRD, SEM, EDX, XPS, BET, FT-IR, Raman, UV-vis DRS, EPR and photoluminescence techniques. BiVO4/FeVO4 was explored for its photocatalytic activity by the decomposition of crystal violet (CV) organic dye under visible radiation. This experiment showed that BiVO4/FeVO4 at a ratio of 2 : 1 completely degrades CV within 60 min. In addition, BiVO4/FeVO4 was investigated for the electrochemical detection of the useful analyte ascorbic acid using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry techniques. This work reveals the potential of the BiVO4/FeVO4 nanocomposite for applications in environmental disciplines as well as in biosensing.

7.
RSC Adv ; 8(62): 35403-35412, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35547929

RESUMEN

In this study, a Zn3(VO4)2/BiVO4 heterojunction nanocomposite photocatalyst was prepared using a hydrothermal route with different molar concentration ratios. The as-synthesized nanophotocatalyst was characterized using XRD, SEM, EDS, XPS, FT-IR, Raman, BET, UV-vis DRS, EPR and PL. The effect of molar ratio on composition and morphology was studied. The as-prepared nanocomposite exhibited excellent photocatalytic response by completely degrading the model pollutant methylene blue (MB) dye in 60 min at molar concentration ratio of 2 : 1. In basic medium at pH 12, the Zn3(VO4)2/BiVO4 nanocomposite degrades MB completely within 45 min. The nanocomposite was also successfully used for the electrochemical detection of an important analyte hydrogen peroxide (H2O2). This study opens up a new horizon for the potential applications of Zn3(VO4)2/BiVO4 nanocomposite in environmental wastewater remediation as well as biosensing sciences.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...