Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Crit Rev Biotechnol ; : 1-21, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38797671

RESUMEN

Global food security has recently been under serious threat from the rapid rise in the world's population, the problems brought on by climate change, and the appearance of new pandemics. As a result, the need for novel and innovative solutions to solve the existing problems and improve food sustainability has become crucial. 3D printing is expected to play a significant role in providing tangible contributions to the food industry in achieving sustainable development goals. The 3D food printing holds the potential to produce highly customized food in terms of shape, texture, flavor, structure and nutritional value and enable us to create new unique formulations and edible alternatives. The problem of whether the cost of the printed meal and 3D printing itself can be sustainably produced is becoming more and more important due to global concerns. This review intends to provide a comprehensive overview of 3D printed foods with an overview of the current printing methodologies, illustrating the technology's influencing factors, and its applications in personalized nutrition, packaging, value addition, and valorization aspects to fully integrate sustainability concerns thus exploring the potential of 3D food printing.

2.
Crit Rev Biotechnol ; : 1-15, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644353

RESUMEN

Dairy products that are contaminated by pathogenic microorganisms through unhygienic farm practices, improper transportation, and inadequate quality control can cause foodborne illness. Furthermore, inadequate storage conditions can increase the microflora of natural spoilage, leading to rapid deterioration. Ultrasound processing is a popular technology used to improve the quality of milk products using high-frequency sound waves. It can improve food safety and shelf life by modifying milk protein and fats without negatively affecting nutritional profile and sensory properties, such as taste, texture, and flavor. Ultrasound processing is effective in eliminating pathogenic microorganisms, such as Salmonella, Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes. However, the efficiency of processing is determined by the type of microorganism, pH, and temperature of the milk product, the frequency and intensity of the applied waves, as well as the sonication time. Ultrasound processing has been established to be a safe and environmentally friendly alternative to conventional heat-based processing technologies that lead to the degradation of milk quality. There are some disadvantages to using ultrasound processing, such as the initial high cost of setting it up, the production of free radicals, the deterioration of sensory properties, and the development of off-flavors with lengthened processing times. The aim of this review is to summarize current research in the field of ultrasound processing and discuss future directions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA