Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Mech Behav Biomed Mater ; 152: 106416, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38335646

RESUMEN

Our daily lives are constantly surrounded by dynamic stimuli, and our skin is deformed in a time-dependent manner. Although skin plays an important role in transmitting stimuli received at the surface to mechanoreceptors, few studies have investigated how differences in skin viscoelasticity affect the mechanical stimuli propagation in the skin. Therefore, using a finite element model, we evaluated the effects and trends of changes in the stiffness and viscoelasticity of the skin on the propagation of mechanical quantities between skin layers where mechanoreceptors are present when subjected to periodic stimuli. First, we constructed a new, sophisticated mathematical model of skin viscoelasticity based on the history-dependent deformation behavior of human skin obtained experimentally. We were able to construct a skin model that thoroughly reproduced the actual human skin deformation behavior at oscillations as fast as 10 Hz by setting viscoelastic parameters with a short time constant (0.001-0.006 s). Then, we calculated how skin material parameters affect the propagation of the mechanical quantities in the skin during the history-dependent skin deformation response to periodic stimuli. The finite element analysis showed that not only stiffness but also viscoelasticity markedly affected the mechanical stimuli propagation in the skin, and the effect differed depending on the layer. In particular, greater immediate responsiveness of the dermis contributed to greater propagation of the mechanical stimulus. Our results indicate that more attention needs to be given to the differences in the time-dependent intradermal mechanical stimuli propagation caused by individual's skin viscoelasticity.


Asunto(s)
Piel , Humanos , Análisis de Elementos Finitos
3.
J Cosmet Dermatol ; 23(1): 296-307, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37522513

RESUMEN

BACKGROUND: Tactile sensation plays a crucial role in object manipulation, communication, and even emotional well-being. It has been reported that the deformability of skin (also described as skin compliance) that shows a large mechanical response to stimuli is associated with high tactile sensitivity. However, although the compliance of the stratum corneum, the outermost layer of skin, can change daily due to skin care and environmental factors, few studies have quantified the effect of the stratum corneum on tactile sensation. AIMS: We investigated the changes in tactile sensitivity resulting from skin hydration and identified corresponding alterations in the compliance of the stratum corneum. METHODS: A randomized controlled trial was conducted. Participants were randomly assigned to an intervention group (n = 20) that had a moisturizing cream applied to their cheeks or a control group (n = 19) that had Milli-Q water applied to their cheeks. Tactile discrimination performance was assessed using psychophysical techniques before and after application. The water content, mechanical response characteristics, and penetration of PEG/PPG-17/4 dimethyl ether from the cream in the stratum corneum were evaluated to identify hydration effects. Skin deformations occurring during tactile sensation were measured concurrently using a suction device employed for tactile stimulation. RESULTS: Tactile sensitivity was increased in participants who had cream applied to the skin surface, while no significant change was observed in participants who received Milli-Q water. The improved discrimination of tactile stimulus intensity was directly related to the magnitude of skin displacement. The higher water content of the stratum corneum due to cream application decreased the dynamic modulus of elasticity of the stratum corneum and increased the skin's extensibility in response to tactile stimuli. CONCLUSIONS: Hydrating the stratum corneum significantly enhances tactile sensitivity and is accompanied by an increase in skin extensibility, a factor in tactile intensity perception. The compliance of the thin stratum corneum layer plays a crucial role in tactile experiences that involve skin stretching.


Asunto(s)
Epidermis , Piel , Humanos , Agua/farmacología , Elasticidad , Cuidados de la Piel , Ensayos Clínicos Controlados Aleatorios como Asunto
4.
Exp Dermatol ; 32(10): 1848-1855, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37587642

RESUMEN

The mechanotransduction of light-touch sensory stimuli is considered to be the main physiological function of epidermal Merkel cells (MCs). Recently, however, MCs have been demonstrated to be also thermo-sensitive, suggesting that their role in skin physiologically extends well beyond mechanosensation. Here, we demonstrate that in healthy human skin epidermal MCs express functional olfactory receptors, namely OR2AT4, just like neighbouring keratinocytes. Selective stimulation of OR2AT4 by topical application of the synthetic odorant, Sandalore®, significantly increased Piccolo protein expression in MCs, as assessed by quantitative immunohistomorphometry, indicating increased vesicle trafficking and recycling, and significantly reduced nerve growth factor (NGF) immunoreactivity within MCs, possibly indicating increased neurotrophin release upon OR2AT4 activation. Live-cell imaging showed that Sandalore® rapidly induces a loss of FFN206-dependent fluorescence in MCs, suggesting OR2AT4-dependent MC depolarization and subsequent vesicle secretion. Yet, in contrast to keratinocytes, OR2AT4 stimulation by Sandalore® altered neither the number nor the proliferation status of MCs. These preliminary ex vivo findings demonstrate that epidermal MCs also exert OR-dependent chemosensory functions in human skin, and invite one to explore whether these newly identified properties are dysregulated in selected skin disorders, for example, in pruritic dermatoses, and if these novel MC functions can be therapeutically targeted to maintain/promote skin health.


Asunto(s)
Células de Merkel , Humanos , Butanoles/metabolismo , Epidermis/metabolismo , Mecanorreceptores/fisiología , Mecanotransducción Celular/fisiología , Células de Merkel/metabolismo , Células de Merkel/fisiología , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Piel/metabolismo
5.
Int J Cosmet Sci ; 45(6): 851-861, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37565335

RESUMEN

OBJECTIVE: The mechanical condition and tactile evaluation of skin are essential for the development of skin care products. Most of the existing commercial instruments and studies aim to evaluate the skin surface by pressing it for hardness or by using imaging sensors, but there have been few instrumental measurements employing rubbing motion. Here, we have developed a sensor specialized for tactile sensation and the contact phenomenon during skin rubbing. METHODS: The developed sensor has three features: It can measure body parts including cheeks and arms, automate the rubbing motion of the probe and measure vibration and friction simultaneously. It is hand-held, with metal probes that rub the skin surface while rotating under a motor drive; it has an accelerometer and a force sensor beneath the probe measuring vibration and friction forces. To evaluate the validity of the sensor's measurements, artificial skin models were measured using the developed sensor and commercially available sensors and the results were compared. The relationship between the sensor output, surface roughness measurement and sensory evaluation was also investigated. Additionally, we evaluated the inter-rater reliability when measuring actual skin. RESULTS: The measurements of five artificial skin models with different surface shapes showed a high correlation (r = 0.99) between the vibration intensity values evaluated by the developed sensor and those measured by a tri-axial acceleration sensor attached to a fingernail. The correlation coefficient between the vibration intensity values and surface roughness was r = 0.91, and the correlation with the sensory evaluation score of roughness was r = 0.99. The friction coefficients measured by the developed sensor and the force plate had r = 0.93, based on measurements of five artificial skin models with different friction conditions. The inter-rater correlation coefficients between the three participants of the developed sensor were as high as 0.92 and 0.94 for the vibration and friction measurements respectively. CONCLUSION: The vibration intensities and friction coefficients from the sensor were highly correlated with those of the conventional sensor. The inter-rater reliability was also high. The developed sensor can be useful for tactile evaluation in skin-care product development.


OBJECTIF: l'état mécanique et l'évaluation tactile de la peau sont essentiels au développement de produits de soins de la peau. La plupart des instruments disponibles sur le marché et des études publiées à ce jour évaluent la surface de la peau en la comprimant pour déterminer sa dureté ou en utilisant des capteurs d'imagerie, mais il n'y a eu que peu de mesures instrumentales utilisant le mouvement de frottement. Ici, nous avons développé un capteur spécialisé pour la sensation tactile et le phénomène de contact lors du frottement de la peau. MÉTHODES: le capteur développé possède trois caractéristiques : il permet d'exercer des mesures sur plusieurs parties du corps, y compris les joues et les bras ; il automatise le mouvement de frottement de la sonde et il mesure simultanément les vibrations et les frottements. Tenu à la main, doté de sondes en métal qui frottent la surface de la peau tout en tournant sous l'action d'un moteur, il est équipé d'un accéléromètre et d'un capteur de force situé sous la sonde qui mesure les forces de vibration et de frottement. Pour déterminer la validité des mesures du capteur, des modèles de peau artificielles ont été évalués à l'aide du capteur développé et de capteurs déjà disponibles sur le marché, et les résultats ont été comparés. Le lien entre les mesures réalisées à l'aide du capteur, la mesure de la rugosité de la surface de la peau et l'évaluation sensorielle a également été étudié. En outre, nous avons évalué la fiabilité inter-évaluateurs lors de la mesure réelle de la peau. RÉSULTATS: les mesures de cinq modèles de peau artificielle avec des formes de surface différentes ont montré une forte corrélation (r = 0,99) entre les valeurs d'intensité des vibrations évaluées par le capteur développé et celles mesurées par un capteur d'accélération triaxial fixé à un ongle. Le coefficient de corrélation entre les valeurs d'intensité des vibrations et la rugosité de la surface était r = 0,91, et la corrélation avec le score d'évaluation sensorielle de la rugosité était r = 0,99. Les coefficients de frottement mesurés par le capteur développé et la plaque de force étaient r = 0,93, sur la base des mesures de cinq modèles de peau artificielle avec des conditions de frottement différentes. Les coefficients de corrélation inter-évaluateurs entre les trois participants utilisant le capteur développé ont atteint 0,92 et 0,94 pour les mesures de vibrations et de frottement, respectivement. CONCLUSION: les intensités des vibrations et les coefficients de frottement du capteur se sont avérés fortement corrélés avec ceux du capteur conventionnel. La fiabilité inter-évaluateurs était également élevée. Le capteur développé peut être utile pour l'évaluation tactile lors du développement de produits de soins de la peau.


Asunto(s)
Piel , Vibración , Humanos , Fricción , Reproducibilidad de los Resultados , Tacto
7.
Skin Res Technol ; 29(3): e13295, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36973983

RESUMEN

BACKGROUND: The tactile perceptions arising on the skin mediate representations of the body and perceptions of the external physical world. Thus, these tactile sensations greatly impact our lives. Although tactile perception is caused by skin deformation, few studies have investigated the contribution of skin physical properties to tactile perception because the skin deformation in response to mechanical stimuli is difficult to measure in real time. In this study, we investigated how the skin deforms in response to externally applied mechanical stimuli and the effect of skin deformation on tactile perception. MATERIALS AND METHODS: Tactile perception was assessed using psychophysical methods. A suction device was used to measure skin deformation in response to mechanical stimuli while assessing tactile perception. The relationship between skin deformation and tactile perception was investigated. RESULTS: Individuals show different skin deformation behavior in response to stimuli of the same intensity, and the amount of skin deformation affects the perceived pressure induced by suction stimulation. Furthermore, when the amount of skin deformation is small, tactile perception becomes more difficult, and the ease of tactile perception varies. CONCLUSION: We argue that dynamic skin behavior is an important factor in tactile perception. Focusing on skin physical characteristics from a constructivist perspective of complex tactile perception may lead to improved tactile communication perception through the control of skin physical properties and realistic tactile presentation in remote environments.


Asunto(s)
Percepción del Tacto , Tacto , Humanos , Tacto/fisiología , Percepción del Tacto/fisiología , Piel , Examen Físico , Estimulación Física/métodos
8.
Sensors (Basel) ; 21(7)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918315

RESUMEN

Visually impaired licensed therapists must have the ability to perceive stiffness through their fingertips in the school for the blind. The teachers strive to provide careful introductory education based on a quantitative assessment of new students' basic stiffness perception. However, assessment materials to help teachers understand new students' stiffness perception are lacking. This study aimed to develop suitable fundamental assessment materials that visually impaired licensed teachers could use to quantitatively assess the difference in the stiffness perception ability of beginning learners in the early stages of learning. They were asked to discriminate the presented materials one at a time, which consisted of thermoplastic elastomers with different degrees of stiffness. We used these materials to compare the beginning learners' ability to perceive stiffness with that of teachers and found that teachers answered correctly at an overall significantly higher rate. Specifically, the teachers' correct response rate (78.8%) for the stiffness perception of all presented stimuli was approximately 15% higher than the beginning learners' correct response rate (64.2%). These results revealed areas of stiffness that are difficult for beginning learners to identify.


Asunto(s)
Acupresión , Humanos , Aprendizaje , Masaje , Percepción , Proyectos Piloto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA