Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Biol ; 512: 44-56, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38729406

RESUMEN

Impaired formation of the biliary network can lead to congenital cholestatic liver diseases; however, the genes responsible for proper biliary system formation and maintenance have not been fully identified. Combining computational network structure analysis algorithms with a zebrafish forward genetic screen, we identified 24 new zebrafish mutants that display impaired intrahepatic biliary network formation. Complementation tests suggested these 24 mutations affect 24 different genes. We applied unsupervised clustering algorithms to unbiasedly classify the recovered mutants into three classes. Further computational analysis revealed that each of the recovered mutations in these three classes has a unique phenotype on node-subtype composition and distribution within the intrahepatic biliary network. In addition, we found most of the recovered mutations are viable. In those mutant fish, which are already good animal models to study chronic cholestatic liver diseases, the biliary network phenotypes persist into adulthood. Altogether, this study provides unique genetic and computational toolsets that advance our understanding of the molecular pathways leading to biliary system malformation and cholestatic liver diseases.


Asunto(s)
Sistema Biliar , Mutación , Pez Cebra , Pez Cebra/genética , Pez Cebra/embriología , Animales , Mutación/genética , Sistema Biliar/embriología , Sistema Biliar/metabolismo , Fenotipo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
PLoS Genet ; 17(3): e1009402, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33739979

RESUMEN

Impaired formation of the intrahepatic biliary network leads to cholestatic liver diseases, which are frequently associated with autoimmune disorders. Using a chemical mutagenesis strategy in zebrafish combined with computational network analysis, we screened for novel genes involved in intrahepatic biliary network formation. We positionally cloned a mutation in the nckap1l gene, which encodes a cytoplasmic adaptor protein for the WAVE regulatory complex. The mutation is located in the last exon after the stop codon of the primary splice isoform, only disrupting a previously unannotated minor splice isoform, which indicates that the minor splice isoform is responsible for the intrahepatic biliary network phenotype. CRISPR/Cas9-mediated nckap1l deletion, which disrupts both the primary and minor isoforms, showed the same defects. In the liver of nckap1l mutant larvae, WAVE regulatory complex component proteins are degraded specifically in biliary epithelial cells, which line the intrahepatic biliary network, thus disrupting the actin organization of these cells. We further show that nckap1l genetically interacts with the Cdk5 pathway in biliary epithelial cells. These data together indicate that although nckap1l was previously considered to be a hematopoietic cell lineage-specific protein, its minor splice isoform acts in biliary epithelial cells to regulate intrahepatic biliary network formation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Empalme Alternativo , Conductos Biliares Intrahepáticos/embriología , Conductos Biliares Intrahepáticos/metabolismo , Morfogénesis/genética , Alelos , Animales , Animales Modificados Genéticamente , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Orden Génico , Pruebas Genéticas , Variación Genética , Hígado/metabolismo , Modelos Biológicos , Mutación , Fenotipo , Isoformas de ARN , Pez Cebra , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
3.
Hepatology ; 70(6): 2107-2122, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31016744

RESUMEN

The growing burden of liver fibrosis and lack of effective antifibrotic therapies highlight the need for identification of pathways and complementary model systems of hepatic fibrosis. A rare, monogenic disorder in which children with mutations in mannose phosphate isomerase (MPI) develop liver fibrosis led us to explore the function of MPI and mannose metabolism in liver development and adult liver diseases. Herein, analyses of transcriptomic data from three human liver cohorts demonstrate that MPI gene expression is down-regulated proportionate to fibrosis in chronic liver diseases, including nonalcoholic fatty liver disease and hepatitis B virus. Depletion of MPI in zebrafish liver in vivo and in human hepatic stellate cell (HSC) lines in culture activates fibrotic responses, indicating that loss of MPI promotes HSC activation. We further demonstrate that mannose supplementation can attenuate HSC activation, leading to reduced fibrogenic activation in zebrafish, culture-activated HSCs, and in ethanol-activated HSCs. Conclusion: These data indicate the prospect that modulation of mannose metabolism pathways could reduce HSC activation and improve hepatic fibrosis.


Asunto(s)
Células Estrelladas Hepáticas/fisiología , Cirrosis Hepática/etiología , Manosa-6-Fosfato Isomerasa/fisiología , Manosa/farmacología , Animales , Células Cultivadas , Glicosilación , Humanos , Masculino , Factor de Crecimiento Derivado de Plaquetas/fisiología , Transducción de Señal/fisiología , Pez Cebra
4.
Development ; 144(14): 2595-2605, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28720653

RESUMEN

The intrahepatic biliary network is a highly branched three-dimensional network lined by biliary epithelial cells, but how its branching patterns are precisely established is not clear. We designed a new computer-based algorithm that quantitatively computes the structural differences of the three-dimensional networks. Utilizing the algorithm, we showed that inhibition of Cyclin-dependent kinase 5 (Cdk5) led to reduced branching in the intrahepatic biliary network in zebrafish. Further, we identified a previously unappreciated downstream kinase cascade regulated by Cdk5. Pharmacological manipulations of this downstream kinase cascade produced a crowded branching defect in the intrahepatic biliary network and influenced actin dynamics in biliary epithelial cells. We generated larvae carrying a mutation in cdk5 regulatory subunit 1a (cdk5r1a), an essential activator of Cdk5. cdk5r1a mutant larvae show similar branching defects as those observed in Cdk5 inhibitor-treated larvae. A small-molecule compound that interferes with the downstream kinase cascade rescued the mutant phenotype. These results provide new insights into branching morphogenesis of the intrahepatic biliary network.


Asunto(s)
Conductos Biliares Intrahepáticos/enzimología , Conductos Biliares Intrahepáticos/crecimiento & desarrollo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Algoritmos , Animales , Animales Modificados Genéticamente , Simulación por Computador , Quinasa 5 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 5 Dependiente de la Ciclina/genética , Técnicas de Inactivación de Genes , Imagenología Tridimensional , Larva/crecimiento & desarrollo , Larva/metabolismo , Quinasas Lim/metabolismo , Modelos Anatómicos , Morfogénesis/efectos de los fármacos , Morfogénesis/genética , Morfogénesis/fisiología , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética , Quinasas p21 Activadas/metabolismo
5.
Cell Rep ; 16(4): 939-949, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27396333

RESUMEN

Adipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) are critical regulators of triacylglycerol (TAG) turnover. CGI-58 is thought to regulate TAG mobilization by stimulating the enzymatic activity of ATGL. However, it is not known whether this coactivation function of CGI-58 occurs in vivo. Moreover, the phenotype of human CGI-58 mutations suggests ATGL-independent functions. Through direct comparison of mice with single or double deficiency of CGI-58 and ATGL, we show here that CGI-58 knockdown causes hepatic steatosis in both the presence and absence of ATGL. CGI-58 also regulates hepatic diacylglycerol (DAG) and inflammation in an ATGL-independent manner. Interestingly, ATGL deficiency, but not CGI-58 deficiency, results in suppression of the hepatic and adipose de novo lipogenic program. Collectively, these findings show that CGI-58 regulates hepatic neutral lipid storage and inflammation in the genetic absence of ATGL, demonstrating that mechanisms driving TAG lipolysis in hepatocytes differ significantly from those in adipocytes.


Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Lipasa/metabolismo , Hígado/metabolismo , Triglicéridos/metabolismo , Adipocitos/metabolismo , Animales , Diglicéridos/metabolismo , Hígado Graso/metabolismo , Hepatocitos/metabolismo , Humanos , Inflamación/metabolismo , Metabolismo de los Lípidos/fisiología , Lipogénesis/fisiología , Lipólisis/fisiología , Masculino , Ratones , Ratones Noqueados
6.
Proc Natl Acad Sci U S A ; 113(11): E1460-9, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26929344

RESUMEN

Mitochondria are the site of iron utilization, wherein imported iron is incorporated into heme or iron-sulfur clusters. Previously, we showed that a cytosolic siderophore, which resembles a bacterial siderophore, facilitates mitochondrial iron import in eukaryotes, including zebrafish. An evolutionarily conserved 3-hydroxy butyrate dehydrogenase, 3-hydroxy butyrate dehydrogenase 2 (Bdh2), catalyzes a rate-limiting step in the biogenesis of the eukaryotic siderophore. We found that inactivation of bdh2 in developing zebrafish embryo results in heme deficiency and delays erythroid maturation. The basis for this erythroid maturation defect is not known. Here we show that bdh2 inactivation results in mitochondrial dysfunction and triggers their degradation by mitophagy. Thus, mitochondria are prematurely lost in bdh2-inactivated erythrocytes. Interestingly, bdh2-inactivated erythroid cells also exhibit genomic alterations as indicated by transcriptome analysis. Reestablishment of bdh2 restores mitochondrial function, prevents premature mitochondrial degradation, promotes erythroid development, and reverses altered gene expression. Thus, mitochondrial communication with the nucleus is critical for erythroid development.


Asunto(s)
Eritrocitos/citología , Hidroxibutirato Deshidrogenasa/metabolismo , Mitofagia/fisiología , Proteínas de Pez Cebra/metabolismo , Animales , Autofagia/fisiología , Embrión no Mamífero/citología , Eritrocitos/fisiología , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Hidroxibutirato Deshidrogenasa/genética , Mitocondrias/fisiología , Mitocondrias/ultraestructura , Oxígeno/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
7.
Hepatology ; 58(4): 1326-38, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23744565

RESUMEN

UNLABELLED: Nonalcoholic fatty liver disease is the most common liver disease in both adults and children. The earliest stage of this disease is hepatic steatosis, in which triglycerides are deposited as cytoplasmic lipid droplets in hepatocytes. Through a forward genetic approach in zebrafish, we found that guanosine monophosphate (GMP) synthetase mutant larvae develop hepatic steatosis. We further demonstrate that activity of the small GTPase Rac1 and Rac1-mediated production of reactive oxygen species (ROS) are down-regulated in GMP synthetase mutant larvae. Inhibition of Rac1 activity or ROS production in wild-type larvae by small molecule inhibitors was sufficient to induce hepatic steatosis. More conclusively, treating larvae with hydrogen peroxide, a diffusible ROS that has been implicated as a signaling molecule, alleviated hepatic steatosis in both GMP synthetase mutant and Rac1 inhibitor-treated larvae, indicating that homeostatic production of ROS is required to prevent hepatic steatosis. We further found that ROS positively regulate the expression of the triglyceride hydrolase gene, which is responsible for the mobilization of stored triglycerides in hepatocytes. Consistently, inhibition of triglyceride hydrolase activity in wild-type larvae by a small molecule inhibitor was sufficient to induce hepatic steatosis. CONCLUSION: De novo GMP synthesis influences the activation of the small GTPase Rac1, which controls hepatic lipid dynamics through ROS-mediated regulation of triglyceride hydrolase expression in hepatocytes.


Asunto(s)
Hígado Graso/prevención & control , Homeostasis/fisiología , Hígado/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra/metabolismo , Animales , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Modelos Animales de Enfermedad , Hígado Graso/metabolismo , Modelos Animales , Mutación/genética , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteína de Unión al GTP rac1/metabolismo
8.
Dev Biol ; 363(1): 128-37, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22222761

RESUMEN

Biliary epithelial cells line the intrahepatic biliary network, a complex three-dimensional network of conduits. The loss of differentiated biliary epithelial cells is the primary cause of many congenital liver diseases. We identified a zebrafish snapc4 (small nuclear RNA-activating complex polypeptide 4) mutant in which biliary epithelial cells initially differentiate but subsequently disappear. In these snapc4 mutant larvae, biliary epithelial cells undergo apoptosis, leading to degeneration of the intrahepatic biliary network. Consequently, in snapc4 mutant larvae, biliary transport of ingested fluorescent lipids to the gallbladder is blocked. Snapc4 is the largest subunit of a protein complex that regulates small nuclear RNA (snRNA) transcription. The snapc4(s445) mutation causes a truncation of the C-terminus, thereby deleting the domain responsible for a specific interaction with Snapc2, a vertebrate specific subunit of the SNAP complex. This mutation leads to a hypomorphic phenotype, as only a subset of snRNA transcripts are quantitatively altered in snapc4(s445) mutant larvae. snapc2 knockdown also disrupts the intrahepatic biliary network in a similar fashion as in snapc4(s445) mutant larvae. These data indicate that the physical interaction between Snapc2 and Snapc4 is important for the expression of a subset of snRNAs and biliary epithelial cell survival in zebrafish.


Asunto(s)
Hígado/metabolismo , Mutación , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Sitios de Unión/genética , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Redes Reguladoras de Genes , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Hibridación in Situ , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Hígado/citología , Hígado/crecimiento & desarrollo , Masculino , Microscopía Confocal , Microscopía Electrónica , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Factores de Transcripción/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
9.
Curr Biol ; 18(20): 1565-71, 2008 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-18951027

RESUMEN

Emerging evidence indicates that paracrine signals from endothelial cells play a role in tissue differentiation and organ formation [1-3]. Here, we identify a novel role for endothelial cells in modulating hepatocyte polarization during liver organogenesis. We find that in zebrafish, the apical domain of the hepatocytes predicts the location of the intrahepatic biliary network. The refinement of hepatocyte polarization coincides with the invasion of endothelial cells into the liver, and these endothelial cells migrate along the maturing basal surface of the hepatocytes. Using genetic, pharmacological, and transplantation experiments, we provide evidence that endothelial cells influence the polarization of the adjacent hepatocytes. This influence of endothelial cells on hepatocytes is mediated at least in part by the cell-surface protein Heart of glass and contributes to the establishment of coordinately aligned hepatocyte apical membranes and evenly spaced intrahepatic conduits.


Asunto(s)
Polaridad Celular , Células Endoteliales/metabolismo , Hepatocitos/metabolismo , Hígado/embriología , Pez Cebra/embriología , Molécula de Adhesión Celular del Leucocito Activado/metabolismo , Animales , Membrana Celular/metabolismo , Movimiento Celular , Regulación del Desarrollo de la Expresión Génica , Hígado/citología , Glicoproteínas de Membrana/metabolismo , Organogénesis , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...