Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Amino Acids ; 56(1): 38, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844708

RESUMEN

Biomarkers that accurately reflect renal function are essential in management of chronic kidney diseases (CKD). However, in children, age/physique and medication often alter established renal biomarkers. We studied whether amino acid enantiomers in body fluids correlate with renal function and whether they are influenced by physique or steroid medication during development. We conducted a prospective study of children 2 to 18 years old with and without CKD. We analyzed associations of serine/asparagine enantiomers in body fluids with major biochemical parameters as well as physique. To study consequences of kidney dysfunction and steroids on serine/asparagine enantiomers, we generated juvenile mice with uninephrectomy, ischemic reperfusion injury, or dexamethasone treatment. We obtained samples from 27 children, of which 12 had CKD due to congenital (n = 7) and perinatal (n = 5) causes. Plasma D-asparagine and the D/L-serine ratio had robust, positive linear associations with serum creatinine and cystatin C, and detected CKD with high sensitivity and specificity, uninfluenced by body size or biochemical parameters. In the animal study, kidney dysfunction increased plasma D-asparagine and the D/L-serine ratio, but dexamethasone treatment did not. Thus, plasma D-asparagine and the D/L-serine ratio can be useful markers for renal function in children.


Asunto(s)
Asparagina , Biomarcadores , Insuficiencia Renal Crónica , Serina , Niño , Animales , Humanos , Asparagina/sangre , Asparagina/metabolismo , Insuficiencia Renal Crónica/sangre , Preescolar , Serina/sangre , Ratones , Masculino , Femenino , Adolescente , Biomarcadores/sangre , Estudios Prospectivos , Dexametasona , Estereoisomerismo , Creatinina/sangre , Riñón/metabolismo
3.
Acta Neuropathol ; 147(1): 77, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687393

RESUMEN

Influenza-associated encephalopathy (IAE) is extremely acute in onset, with high lethality and morbidity within a few days, while the direct pathogenesis by influenza virus in this acute phase in the brain is largely unknown. Here we show that influenza virus enters into the cerebral endothelium and thereby induces IAE. Three-weeks-old young mice were inoculated with influenza A virus (IAV). Physical and neurological scores were recorded and temporal-spatial analyses of histopathology and viral studies were performed up to 72 h post inoculation. Histopathological examinations were also performed using IAE human autopsy brains. Viral infection, proliferation and pathogenesis were analyzed in cell lines of endothelium and astrocyte. The effects of anti-influenza viral drugs were tested in the cell lines and animal models. Upon intravenous inoculation of IAV in mice, the mice developed encephalopathy with brain edema and pathological lesions represented by micro bleeding and injured astrocytic process (clasmatodendrosis) within 72 h. Histologically, massive deposits of viral nucleoprotein were observed as early as 24 h post infection in the brain endothelial cells of mouse models and the IAE patients. IAV inoculated endothelial cell lines showed deposition of viral proteins and provoked cell death, while IAV scarcely amplified. Inhibition of viral transcription and translation suppressed the endothelial cell death and the lethality of mouse models. These data suggest that the onset of encephalopathy should be induced by cerebral endothelial infection with IAV. Thus, IAV entry into the endothelium, and transcription and/or translation of viral RNA, but not viral proliferation, should be the key pathogenesis of IAE.


Asunto(s)
Encéfalo , Infecciones por Orthomyxoviridae , Animales , Humanos , Ratones , Encéfalo/patología , Encéfalo/virología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/complicaciones , Internalización del Virus , Virus de la Influenza A/patogenicidad , Células Endoteliales/virología , Células Endoteliales/patología , Gripe Humana/patología , Gripe Humana/complicaciones , Encefalopatías/virología , Encefalopatías/patología , Masculino , Modelos Animales de Enfermedad , Femenino , Endotelio/patología , Endotelio/virología , Ratones Endogámicos C57BL
4.
Anal Chem ; 96(12): 4876-4883, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38477306

RESUMEN

For the discovery of sensitive biomarkers of kidney function focusing on chiral amino acids, a multiple heart-cutting two-dimensional (2D) liquid chromatography-mass spectrometry (LC-MS)/MS system has been designed/developed. As the target analytes, alanine (Ala), aspartic acid, glutamic acid (Glu), leucine (Leu), lysine, methionine, phenylalanine (Phe), proline (Pro), serine (Ser), and valine were selected considering the presence of their d-forms in mammals. The 2D LC-MS/MS system consisted of the nonenantioselective reversed-phase separation of the target amino acids, the separations of the d- and l-enantiomers, and detection using MS/MS. Using the method, the plasma chiral amino acids, precolumn derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole, were isolated from other intrinsic substances, then determined without losing sensitivity by the fully automated whole-peak volume transfer operation from first to second dimension. In all of the tested plasma samples obtained from five healthy individuals and 15 patients with chronic kidney disease (CKD), the target chiral amino acids were determined without interference. In healthy individuals, the levels of all the tested d-amino acids were regulated in the low ranges. In contrast, the % d values of Glu, Leu, and Phe significantly increased with the progress of kidney dysfunction, besides the previously reported values of d-Ala, Pro, and Ser. Concerning Phe, the significant increase of the % d values (p < 0.05) was reported for the first time even in the mild CKD group compared to those of the healthy group; d-Phe might be a more sensitive marker than the previously reported d-forms. These results demonstrated the potential of these d-forms as the sensitive biomarkers of kidney function for the early diagnosis of CKD.


Asunto(s)
Aminoácidos , Insuficiencia Renal Crónica , Animales , Humanos , Aminoácidos/análisis , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Líquida de Alta Presión/métodos , Alanina/análisis , Serina , Ácido Glutámico , Leucina , Prolina , Fenilalanina , Insuficiencia Renal Crónica/diagnóstico , Diagnóstico Precoz , Biomarcadores , Estereoisomerismo , Mamíferos
5.
J Chromatogr A ; 1719: 464739, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38401374

RESUMEN

A highly-selective three-dimensional high-performance liquid chromatographic (3D-HPLC) system was developed for the determination of serine (Ser), threonine (Thr) and allo-threonine (aThr) enantiomers in human plasma to screen the new biomarker of chronic kidney disease (CKD). d-Ser has been reported to be the candidate biomarker of CKD, however, multiple biomarkers are still required. Therefore, Ser analogs of hydroxy amino acids are the focus in the present study. For the sensitive analysis, the amino acids were derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole and detected by their fluorescence. The 3D-HPLC system consisted of a reversed-phase column (Singularity RP18, 1.0 × 250 mm), an anion-exchange column (Singularity AX, 1.0 × 150 mm) and a Pirkle-type chiral stationary phase (Singularity CSP-013S, 1.5 × 250 mm). The developed method was validated and applied to the human plasma samples obtained from 15 healthy volunteers and 165 CKD patients. The concentrations of the d-forms were 1.13-2.26 (Ser), 0.01-0.03 (Thr) and 0.04-0.10 µM (aThr) for the healthy volunteers and 0.95-19.0 (Ser), 0-0.57 (Thr) and 0.04-1.02 µM (aThr) for the CKD patients. The concentrations and the %d values of all the target d-amino acids were increased along with the decreasing of renal function and further investigation for clinical applications are expected.


Asunto(s)
Antraciclinas , Insuficiencia Renal Crónica , Treonina , Humanos , Serina , Cromatografía Líquida de Alta Presión/métodos , Aminoácidos/química , Estereoisomerismo , Biomarcadores
6.
Autophagy ; 20(3): 489-504, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37722816

RESUMEN

Chronic kidney disease (CKD) has reached epidemic proportions worldwide, partly due to the increasing population of elderly and obesity. Macroautophagy/autophagy counteracts CKD progression, whereas autophagy is stagnated owing to lysosomal overburden during aging and obesity, which promotes CKD progression. Therefore, for preventing CKD progression during aging and obesity, it is important to elucidate the compensation mechanisms of autophagy stagnation. We recently showed that FGF21 (fibroblast growth factor 21), which is a prolongevity and metabolic hormone, is induced by autophagy deficiency in kidney proximal tubular epithelial cells (PTECs); however, its pathophysiological role remains uncertain. Here, we investigated the interplay between FGF21 and autophagy and the direct contribution of endogenous FGF21 in the kidney during aging and obesity using PTEC-specific fgf21- and/or atg5-deficient mice at 24 months (aged) or under high-fat diet (obese) conditions. PTEC-specific FGF21 deficiency in young mice increased autophagic flux due to increased demand of autophagy, whereas fgf21-deficient aged or obese mice exacerbated autophagy stagnation due to severer lysosomal overburden caused by aberrant autophagy. FGF21 was robustly induced by autophagy deficiency, and aged or obese PTEC-specific fgf21- and atg5-double deficient mice deteriorated renal histology compared with atg5-deficient mice. Mitochondrial function was severely disturbed concomitant with exacerbated oxidative stress and downregulated TFAM (transcription factor A, mitochondrial) in double-deficient mice. These results indicate that FGF21 is robustly induced by autophagy disturbance and protects against CKD progression during aging and obesity by alleviating autophagy stagnation and maintaining mitochondrial homeostasis, which will pave the way to a novel treatment for CKD.


Asunto(s)
Autofagia , Insuficiencia Renal Crónica , Humanos , Animales , Ratones , Anciano , Autofagia/fisiología , Riñón/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Obesidad/metabolismo , Envejecimiento , Progresión de la Enfermedad
8.
Clin Exp Nephrol ; 27(11): 891-900, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37498348

RESUMEN

D-Serine, a rare enantiomer of serine, is a biomarker of kidney disease and function. The level of D-serine in the human body is precisely regulated through the urinary clearance of the kidney, and its clearance serves as a new measure of glomerular filtration rate with a lower bias than creatinine clearance. D-Serine also has a direct effect on the kidneys and mediates the cellular proliferation of tubular cells via mTOR signaling and induces kidney remodeling as a compensatory reaction to the loss of kidney mass. In living kidney donors, the removal of the kidney results in an increase in blood D-serine level, which in turn accelerates kidney remodeling and augments kidney clearance, thus reducing blood levels of D-serine. This feedback system strictly controls D-serine levels in the body. The function of D-serine as a biomarker and modulator of kidney function will be the basis of precision medicine for kidney diseases.


Asunto(s)
Enfermedades Renales , Serina , Humanos , Creatinina , Riñón , Enfermedades Renales/diagnóstico , Tasa de Filtración Glomerular , Biomarcadores
9.
Kidney Int Rep ; 8(6): 1192-1200, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37284685

RESUMEN

Introduction: An ideal endogenous molecule for measuring glomerular filtration rate (GFR) is still unknown. However, a rare enantiomer of serine, d-serine, is useful in GFR measurement. This study explored the potential of other d-amino acids for kidney function assessment. Methods: This was a cross-sectional observational study of 207 living kidney transplant donors and recipients, for whom GFR was measured using clearance of inulin (C-in). Associations between levels of d-amino acids and GFR were analyzed using multivariate factor analysis. Fractional excretion (FE), a ratio of the clearance of a substance to C-in as a standard molecule, was calculated to monitor the excretion ratio after glomerular filtration. Dissociation from an ideal FE of 100% was assessed as a bias. Proportional bias against C-in was calculated using Deming regression. Results: Multivariate analysis identified the blood level of d-asparagine to reflect GFR. Means of blood d-asparagine and clearance of d-asparagine (C-d-Asn) were 0.21 µM and 65.0 ml/min per 1.73 m2, respectively. Inulin-based FE (FEin) of d-asparagine was 98.67% (95% confidence interval [CI]: 96.43-100.90%) and less biased than those of known GFR markers, such as FEin of creatinine (147.93 [145.39-150.46]; P < 0.001) and d-serine (84.84 [83.22-86.46]; P < 0.001). A proportional bias of C-d-Asn to C-in was -7.8% (95% CI, -14.5 to -0.6%), which was minor compared to those of clearance of creatinine (-34.5% [-37.9 to -31.0%]) and d-serine (21.2% [13.9-28.9]). Conclusion: D-Asparagine acts similar to inulin in the kidney. Therefore, d-asparagine is an ideal endogenous molecule that can be used for GFR measurement.

10.
Biochem Biophys Rep ; 34: 101452, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36909453

RESUMEN

d-Amino acids, rare enantiomers of amino acids, have been identified as biomarkers and therapeutic options for COVID-19. Methods for monitoring recovery are necessary for managing COVID-19. On the other hand, the presence of SARS-CoV2 virus in the blood is associated with worse outcomes. We investigated the potential of d-amino acids for assessing recovery from severe COVID-19. In patients with severe COVID-19 requiring artificial ventilation, the blood levels of d-amino acids, including d-alanine, d-proline, d-serine, and d-asparagine, which were lower than the normal range before treatment, quickly and transiently increased and surpassed the upper limit of the normal range. This increase preceded the recovery of respiratory function, as indicated by ventilation weaning. The increase in blood d-amino acid levels was associated with the disappearance of the virus in the blood, but not with inflammatory manifestations or blood cytokine levels. d-Amino acids are sensitive biomarkers that reflect the recovery of the clinical course and blood viral load. Dynamic changes in blood d-amino acid levels are key indicators of clinical course.

11.
JCI Insight ; 8(4)2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36649084

RESUMEN

Obesity is a major risk factor for end-stage kidney disease. We previously found that lysosomal dysfunction and impaired autophagic flux contribute to lipotoxicity in obesity-related kidney disease, in both humans and experimental animal models. However, the regulatory factors involved in countering renal lipotoxicity are largely unknown. Here, we found that palmitic acid strongly promoted dephosphorylation and nuclear translocation of transcription factor EB (TFEB) by inhibiting the mechanistic target of rapamycin kinase complex 1 pathway in a Rag GTPase-dependent manner, though these effects gradually diminished after extended treatment. We then investigated the role of TFEB in the pathogenesis of obesity-related kidney disease. Proximal tubular epithelial cell-specific (PTEC-specific) Tfeb-deficient mice fed a high-fat diet (HFD) exhibited greater phospholipid accumulation in enlarged lysosomes, which manifested as multilamellar bodies (MLBs). Activated TFEB mediated lysosomal exocytosis of phospholipids, which helped reduce MLB accumulation in PTECs. Furthermore, HFD-fed, PTEC-specific Tfeb-deficient mice showed autophagic stagnation and exacerbated injury upon renal ischemia/reperfusion. Finally, higher body mass index was associated with increased vacuolation and decreased nuclear TFEB in the proximal tubules of patients with chronic kidney disease. These results indicate a critical role of TFEB-mediated lysosomal exocytosis in counteracting renal lipotoxicity.


Asunto(s)
Dieta Alta en Grasa , Exocitosis , Lípidos , Insuficiencia Renal Crónica , Animales , Humanos , Ratones , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Dieta Alta en Grasa/efectos adversos , Exocitosis/genética , Riñón/metabolismo , Riñón/patología , Lípidos/toxicidad , Lisosomas/metabolismo , Obesidad/metabolismo , Insuficiencia Renal Crónica/metabolismo
12.
Cell Rep ; 38(9): 110444, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35235784

RESUMEN

Accumulation of senescent cells affects organismal aging and the prevalence of age-associated disease. Emerging evidence suggests that activation of autophagy protects against age-associated diseases and promotes longevity, but the roles and regulatory mechanisms of autophagy in cellular senescence are not well understood. Here, we identify the transcription factor, MondoA, as a regulator of cellular senescence, autophagy, and mitochondrial homeostasis. MondoA protects against cellular senescence by activating autophagy partly through the suppression of an autophagy-negative regulator, Rubicon. In addition, we identify peroxiredoxin 3 (Prdx3) as another downstream regulator of MondoA essential for mitochondrial homeostasis and autophagy. Rubicon and Prdx3 work independently to regulate senescence. Furthermore, we find that MondoA knockout mice have exacerbated senescence during ischemic acute kidney injury (AKI), and a decrease of MondoA in the nucleus is correlated with human aging and ischemic AKI. Our results suggest that decline of MondoA worsens senescence and age-associated disease.


Asunto(s)
Lesión Renal Aguda , Senescencia Celular , Animales , Autofagia/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Homeostasis , Ratones , Mitocondrias
13.
Nephrol Dial Transplant ; 37(1): 53-62, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-33367839

RESUMEN

BACKGROUND: The inability of enzyme replacement therapy (ERT) to prevent progression of Fabry nephropathy (FN) in the presence of >1 g/day proteinuria underscores the necessity of identifying effective biomarkers for early diagnosis of FN preceding proteinuria. Here we attempted to identify biomarkers for early detection of FN. METHODS: Fifty-one Fabry disease (FD) patients were enrolled. Urinary mulberry bodies (uMBs) were immunostained for globotriaosylceramide (Gb3) and renal cell markers to determine their origin. The association between semiquantitative uMB excretion and the histological severity of podocyte vacuolation was investigated in seven patients using the vacuolated podocyte:glomerular average area ratio. The association between the semiquantitative estimate of uMB excretion and duration of ERT was analyzed. A longitudinal study was conducted to assess the effect of ERT on uMB excretion. RESULTS: Thirty-two patients (63%) had uMBs, while only 31% showed proteinuria. The uMBs were positive for Gb3, lysosomal-associated membrane protein 1 and podocalyxin, suggesting they were derived from lysosomes with Gb3 accumulation in podocytes. We observed more severe podocyte vacuolation with increased uMB excretion (P = 0.03 for trend); however, the same was not observed with increased proteinuria. The percentage of patients with substantial uMB excretion increased with shorter ERT duration (P = 0.018). Eighteen-month-long ERT reduced uMB excretion (P = 0.03) without affecting proteinuria. CONCLUSIONS: uMB excretion, implying ongoing podocyte injury, preceded proteinuria in most patients. Semiquantitative uMB estimates can serve as novel biomarkers for early FN diagnosis and for monitoring the efficacy of FD-specific therapies.


Asunto(s)
Enfermedad de Fabry , Biomarcadores , Diagnóstico Precoz , Terapia de Reemplazo Enzimático , Enfermedad de Fabry/diagnóstico , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/patología , Humanos , Estudios Longitudinales , alfa-Galactosidasa/uso terapéutico
14.
Autophagy ; 17(7): 1700-1713, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32546086

RESUMEN

Recently, we identified a novel mechanism of lipotoxicity in the kidney proximal tubular cells (PTECs); lipid overload stimulates macroautophagy/autophagy for the renovation of plasma and organelle membranes to maintain the integrity of the PTECs. However, this autophagic activation places a burden on the lysosomal system, leading to a downstream suppression of autophagy, which manifests as phospholipid accumulation and inadequate acidification in lysosomes. Here, we investigated whether pharmacological correction by eicosapentaenoic acid (EPA) supplementation could restore autophagic flux and alleviate renal lipotoxicity. EPA supplementation to high-fat diet (HFD)-fed mice reduced several hallmarks of lipotoxicity in the PTECs, such as phospholipid accumulation in the lysosome, mitochondrial dysfunction, inflammation, and fibrosis. In addition to improving the metabolic syndrome, EPA alleviated renal lipotoxicity via several mechanisms. EPA supplementation to HFD-fed mice or the isolated PTECs cultured in palmitic acid (PA) restored lysosomal function with significant improvements in the autophagic flux. The PA-induced redistribution of phospholipids from cellular membranes into lysosomes and the HFD-induced accumulation of SQSTM1/p62 (sequestosome 1), an autophagy substrate, during the temporal and genetic ablation of autophagy were significantly reduced by EPA, indicating that EPA attenuated the HFD-mediated increases in autophagy demand. Moreover, a fatty acid pulse-chase assay revealed that EPA promoted lipid droplet (LD) formation and transfer from LDs to the mitochondria for beta-oxidation. Noteworthy, the efficacy of EPA on lipotoxicity is autophagy-dependent and cell-intrinsic. In conclusion, EPA counteracts lipotoxicity in the proximal tubule by alleviating autophagic numbness, making it potentially suitable as a novel treatment for obesity-related kidney diseases.Abbreviations: 4-HNE: 4-hydroxy-2-nonenal; ACTB: actin beta; ADGRE1/F4/80: adhesion G protein-coupled receptor E1; ATG: autophagy-related; ATP: adenosine triphosphate; BODIPY: boron-dipyrromethene; BSA: bovine serum albumin; cKO: conditional knockout; CML: N-carboxymethyllysine; COL1A1: collagen type I alpha 1 chain; COX: cytochrome c oxidase; CTRL: control; DGAT: diacylglycerol O-acyltransferase; EPA: eicosapentaenoic acid; FA: fatty acid; FFA: free fatty acid; GFP: green fluorescent protein; HFD: high-fat diet; iKO: inducible knockout; IRI: ischemia-reperfusion injury; LAMP1: lysosomal-associated membrane protein 1; LD: lipid droplet; LRP2: low density lipoprotein receptor-related protein 2; MAP1LC3: microtubule-associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; OA: oleic acid; PAS: periodic-acid Schiff; PPAR: peroxisome proliferator activated receptor; PPARGC1/PGC1: peroxisome proliferator activated receptor, gamma, coactivator 1; PTEC: proximal tubular epithelial cell; ROS: reactive oxygen species; RPS6: ribosomal protein S6; SDH: succinate dehydrogenase complex; SFC/MS/MS: supercritical fluid chromatography triple quadrupole mass spectrometry; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TG: triglyceride; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Autofagia/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Ácido Eicosapentaenoico/farmacología , Ácido Eicosapentaenoico/uso terapéutico , Lesión Renal Aguda/inducido químicamente , Animales , Riñón/efectos de los fármacos , Túbulos Renales Proximales/efectos de los fármacos , Lisosomas/efectos de los fármacos , Ratones , Ratones Transgénicos , Fosfolípidos/metabolismo
15.
Kidney360 ; 2(10): 1611-1624, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35372967

RESUMEN

Background: d-serine, a long-term undetected enantiomer of serine, is a biomarker that reflects kidney function and disease activity. The physiologic functions of d-serine are unclear. Methods: The dynamics of d-serine were assessed by measuring d-serine in human samples of living kidney donors using two-dimensional high-performance liquid chromatography, and by autoradiographic studies in mice. The effects of d-serine on the kidney were examined by gene expression profiling and metabolic studies using unilateral nephrectomy mice, and genetically modified cells. Results: Unilateral nephrectomy in human living kidney donors decreases urinary excretion and thus increases the blood level of d-serine. d-serine is quickly and dominantly distributed to the kidney on injection in mice, suggesting the kidney is a main target organ. Treatment of d-serine at a low dose promotes the enlargement of remnant kidney in mouse model. Mechanistically, d-serine activates the cell cycle for tissue remodeling through an mTOR-related pathway. Conclusions: d-serine is a physiologic molecule that promotes kidney remodeling. Besides its function as a biomarker, d-serine has a physiologic activity that influences kidney function.


Asunto(s)
Riñón , Serina , Animales , Proliferación Celular , Humanos , Riñón/metabolismo , Donadores Vivos , Ratones , Nefrectomía
16.
Biochem Biophys Res Commun ; 524(3): 636-642, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32029271

RESUMEN

Hyperphosphatemia is a common complication in patients with advanced chronic kidney disease (CKD) as well as an increased risk of cardiovascular mortality; however, the molecular mechanisms of phosphate-mediated kidney injury are largely unknown. Autophagy is a lysosomal degradation system, which plays protective roles against kidney diseases. Here, we studied the role of autophagy in kidney proximal tubular cells (PTECs) during phosphate overload. Temporal cessation of autophagy in drug-induced PTEC-specific autophagy-deficient mice that were fed high phosphate diet induced mild cytosolic swelling and an accumulation of SQSTM1/p62-and ubiquitin-positive protein aggregates in PTECs, indicating that phosphate overload requires enhanced autophagic activity for the degradation of increasing substrate. Morphological and biochemical analysis demonstrated that high phosphate activates mitophagy in PTECs in response to oxidative stress. PTEC-specific autophagy-deficient mice receiving heminephrectomy and autophagy-deficient cultured PTECs exhibited mitochondrial dysfunction, increased reactive oxygen species production, and reduced ATP production in response to phosphate overload, suggesting that high phosphate-induced autophagy counteracts mitochondrial injury and maintains cellular bioenergetics in PTECs. Thus, potentiating autophagic activity could be a therapeutic option for suppressing CKD progression during phosphate overload.


Asunto(s)
Autofagia , Riñón/patología , Mitocondrias/patología , Fosfatos/toxicidad , Animales , Autofagia/efectos de los fármacos , Citoprotección , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Túbulos Renales Proximales/patología , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitofagia
17.
Autophagy ; 16(10): 1889-1904, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31944172

RESUMEN

Macroautophagy/autophagy is a lysosomal degradation system which plays a protective role against kidney injury. RUBCN/Rubicon (RUN domain and cysteine-rich domain containing, Beclin 1-interacting protein) inhibits the fusion of autophagosomes and lysosomes. However, its physiological role in kidney proximal tubular epithelial cells (PTECs) remains uncertain. In the current study, we analyzed the phenotype of newly generated PTEC-specific rubcn-deficient (KO) mice. Additionally, we investigated the role of RUBCN in lipid metabolism using isolated rubcn-deficient PTECs. Although KO mice exhibited sustained high autophagic flux in PTECs, they were not protected from acute ischemic kidney injury. Unexpectedly, KO mice exhibited hallmark features of metabolic syndrome accompanied by expanded lysosomes containing multi-layered phospholipids in PTECs. RUBCN deficiency in cultured PTECs promoted the mobilization of phospholipids from cellular membranes to lysosomes via enhanced autophagy. Treatment of KO PTECs with oleic acid accelerated fatty acids transfer to mitochondria. Furthermore, KO PTECs promoted massive triglyceride accumulation in hepatocytes (BNL-CL2 cells) co-cultured in transwell, suggesting accelerated fatty acids efflux from the PTECs contributes to the metabolic syndrome in KO mice. This study shows that sustained high autophagic flux by RUBCN deficiency in PTECs leads to metabolic syndrome concomitantly with an accelerated mobilization of phospholipids from cellular membranes to lysosomes. Abbreviations: ABC: ATP binding cassette; ACADM: acyl-CoA dehydrogenase medium chain; ACTB: actin, beta; ATG: autophagy related; AUC: area under the curve; Baf: bafilomycin A1; BAT: brown adipose tissue; BODIPY: boron-dipyrromethene; BSA: bovine serum albumin; BW: body weight; CAT: chloramphenicol acetyltransferase; CM: complete medium; CPT1A: carnitine palmitoyltransferase 1a, liver; CQ: chloroquine; CTRL: control; EGFP: enhanced green fluorescent protein; CTSD: cathepsin D; EAT: epididymal adipose tissue; EGFR: epidermal growth factor receptor; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; FA: fatty acid; FBS: fetal bovine serum; GTT: glucose tolerance test; HE: hematoxylin and eosin; HFD: high-fat diet; I/R: ischemia-reperfusion; ITT: insulin tolerance test; KAP: kidney androgen regulated protein; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LD: lipid droplet; LRP2: low density lipoprotein receptor related protein 2; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MAT: mesenteric adipose tissue; MS: mass spectrometry; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NDRG1: N-myc downstream regulated 1; NDUFB5: NADH:ubiquinone oxidoreductase subunit B5; NEFA: non-esterified fatty acid; OA: oleic acid; OCT: optimal cutting temperature; ORO: Oil Red O; PAS: Periodic-acid Schiff; PFA: paraformaldehyde; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PPARA: peroxisome proliferator activated receptor alpha; PPARGC1A: PPARG coactivator 1 alpha; PTEC: proximal tubular epithelial cell; RAB7A: RAB7A, member RAS oncogene family; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase B1; RT: reverse transcription; RUBCN: rubicon autophagy regulator; SAT: subcutaneous adipose tissue; SFC: supercritical fluid chromatography; SQSTM1: sequestosome 1; SREBF1: sterol regulatory element binding transcription factor 1; SV-40: simian virus-40; TFEB: transcription factor EB; TG: triglyceride; TS: tissue specific; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling; UN: urea nitrogen; UQCRB: ubiquinol-cytochrome c reductase binding protein; UVRAG: UV radiation resistance associated; VPS: vacuolar protein sorting; WAT: white adipose tissue.


Asunto(s)
Células Epiteliales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Túbulos Renales Proximales/metabolismo , Animales , Autofagia , Membrana Celular/metabolismo , Endocitosis , Receptores ErbB/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Metabolismo de los Lípidos , Lipidómica , Lisosomas/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Consumo de Oxígeno , Fosfolípidos/metabolismo
18.
J Orthop Surg Res ; 14(1): 342, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694677

RESUMEN

BACKGROUND: Recently, computerized virtual surgery planning has been increasingly applied in various orthopedic procedures. In this study, we developed an image fusion system for 3D preoperative planning and fluoroscopy for the osteosynthesis. To assess the utility of image fusion system, we evaluated the reproducibility of preoperative planning in the osteosynthesis of distal radius fractures with using the image fusion system, and compared with the reproducibility of the patients without using the image fusion system. METHODS: Forty-two wrists of 42 distal radius fracture patients who underwent osteosynthesis using volar locking plates were evaluated. The patients were divided into two groups. Image fusion group utilized three-dimensional (3D) preoperative planning and image fusion system. Control group utilized only 3D preoperative planning. In both groups, 3D preoperative planning was performed in order to determine reduction, placement, and choice of implants. In the image fusion group, the outline of planned image was displayed on a monitor overlapping with fluoroscopy images during surgery. Reductions were evaluated by volar tilt and radial inclination of 3D images. Plate positions were evaluated with distance to joint surface, plate center axis position, and inclination relative to the radius axis. Screw choices were recorded for the plan and actual choices for each screw hole. Differences in the parameters between pre- and postoperative images were evaluated. Differences in reduction shape, plate positions, and screw choices were compared between groups. RESULTS: The differences in the distance from plate to joint surface were significantly smaller in the image fusion group compared to the control group (P < 0.01). The differences in the distal screw choices were significantly smaller in the image fusion group compared to the control group (P < 0.01). CONCLUSIONS: The image fusion system was useful to reproduce the planned plate position and distal screw choices in the osteosynthesis of distal radius fractures. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03764501.


Asunto(s)
Fluoroscopía/métodos , Fijación Interna de Fracturas/métodos , Imagenología Tridimensional/métodos , Cuidados Preoperatorios/métodos , Fracturas del Radio/diagnóstico por imagen , Fracturas del Radio/cirugía , Adulto , Anciano , Anciano de 80 o más Años , Placas Óseas , Femenino , Fijación Interna de Fracturas/instrumentación , Humanos , Masculino , Persona de Mediana Edad , Cuidados Preoperatorios/instrumentación , Adulto Joven
19.
CEN Case Rep ; 8(4): 297-300, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31359345

RESUMEN

We experienced a case of a 36-year-old female with rapidly progressive glomerulonephritis (RPGN) due to anti-neutrophil cytoplasmic antibody (ANCA)-associated nephritis and systemic lupus erythematosus (SLE) nephritis. Chiral amino acid metabolomics revealed a prominent profile of D-serine in this patient. At the fulminant period of RPGN, the level of plasma D-serine, a potential biomarker in CKD that reflects actual glomerular filtration ratio (GFR), was extremely high. On the other hand, urinary fractional excretion (FE) of D-serine, which was usually much higher than that of L-isoform, was 0% in this patient. These abnormal D-serine profiles normalized in response to the intensive treatment. Normalizations of blood D-serine levels were in parallel with those of blood creatinine levels and potentially reflect the recovery of GFR. FE of D-serine increased transiently before the normalization of D-serine profile, suggesting that kidney promotes urinary excretion of D-serine for the normalization of plasma D-serine level. These unexplored clinical features of D-serine well reflected the clinical course of this patient. Blood D-serine level can also serve as a biomarker in acute kidney injury (AKI) or RPGN, and, in combination with FE of D-serine, may render the clinical practitioners to judge the efficacy of intensive treatments.


Asunto(s)
Lesión Renal Aguda/sangre , Glomerulonefritis/inmunología , Glomerulonefritis/terapia , Riñón/metabolismo , Serina/sangre , Adulto , Anticuerpos Anticitoplasma de Neutrófilos/sangre , Creatinina/sangre , Ciclofosfamida/administración & dosificación , Ciclofosfamida/uso terapéutico , Progresión de la Enfermedad , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/uso terapéutico , Femenino , Tasa de Filtración Glomerular/efectos de los fármacos , Glucocorticoides/administración & dosificación , Glucocorticoides/uso terapéutico , Humanos , Inmunosupresores/administración & dosificación , Inmunosupresores/uso terapéutico , Riñón/patología , Riñón/fisiopatología , Nefritis Lúpica/complicaciones , Nefritis Lúpica/inmunología , Ácido Micofenólico/administración & dosificación , Ácido Micofenólico/uso terapéutico , Intercambio Plasmático/métodos , Prednisolona/administración & dosificación , Prednisolona/uso terapéutico , Serina/orina , Resultado del Tratamiento
20.
J Am Soc Nephrol ; 30(6): 929-945, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31040190

RESUMEN

BACKGROUND: Evidence of a protective role of autophagy in kidney diseases has sparked interest in autophagy as a potential therapeutic strategy. However, understanding how the autophagic process is altered in each disorder is critically important in working toward therapeutic applications. METHODS: Using cultured kidney proximal tubule epithelial cells (PTECs) and diabetic mouse models, we investigated how autophagic activity differs in type 1 versus type 2 diabetic nephropathy. We explored nutrient signals regulating starvation-induced autophagy in PTECs and used autophagy-monitoring mice and PTEC-specific autophagy-deficient knockout mice to examine differences in autophagy status and autophagy's role in PTECs in streptozotocin (STZ)-treated type 1 and db/db type 2 diabetic nephropathy. We also examined the effects of rapamycin (an inhibitor of mammalian target of rapamycin [mTOR]) on vulnerability to ischemia-reperfusion injury. RESULTS: Administering insulin or amino acids, but not glucose, suppressed autophagy by activating mTOR signaling. In db/db mice, autophagy induction was suppressed even under starvation; in STZ-treated mice, autophagy was enhanced even under fed conditions but stagnated under starvation due to lysosomal stress. Using knockout mice with diabetes, we found that, in STZ-treated mice, activated autophagy counteracts mitochondrial damage and fibrosis in the kidneys, whereas in db/db mice, autophagic suppression jeopardizes kidney even in the autophagy-competent state. Rapamycin-induced pharmacologic autophagy produced opposite effects on ischemia-reperfusion injury in STZ-treated and db/db mice. CONCLUSIONS: Autophagic activity in PTECs is mainly regulated by insulin. Consequently, autophagic activity differs in types 1 and 2 diabetic nephropathy, which should be considered when developing strategies to treat diabetic nephropathy by modulating autophagy.


Asunto(s)
Autofagia/efectos de los fármacos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/prevención & control , Lisosomas/metabolismo , Sirolimus/farmacología , Aminoácidos/farmacología , Animales , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Nefropatías Diabéticas/fisiopatología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Insulina/farmacología , Túbulos Renales Proximales/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sensibilidad y Especificidad , Estreptozocina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...