Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSystems ; 9(2): e0076423, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38289043

RESUMEN

The major oral odor compound methyl mercaptan (CH3SH) is strongly associated with halitosis and periodontitis. CH3SH production stems from the metabolism of polymicrobial communities in periodontal pockets and on the tongue dorsum. However, understanding of CH3SH-producing oral bacteria and their interactions is limited. This study aimed to investigate CH3SH production by major oral bacteria and the impact of interspecies interactions on its generation. Using a newly constructed large-volume anaerobic noncontact coculture system, Fusobacterium nucleatum was found to be a potent producer of CH3SH, with that production stimulated by metabolic interactions with Streptococcus gordonii, an early dental plaque colonizer. Furthermore, analysis of extracellular amino acids using an S. gordonii arginine-ornithine antiporter (ArcD) mutant demonstrated that ornithine excreted from S. gordonii is a key contributor to increased CH3SH production by F. nucleatum. Further study with 13C, 15N-methionine, as well as gene expression analysis, revealed that ornithine secreted by S. gordonii increased the demand for methionine through accelerated polyamine synthesis by F. nucleatum, leading to elevated methionine pathway activity and CH3SH production. Collectively, these findings suggest that interaction between S. gordonii and F. nucleatum plays a key role in CH3SH production, providing a new insight into the mechanism of CH3SH generation in oral microbial communities. A better understanding of the underlying interactions among oral bacteria involved in CH3SH generation can lead to the development of more appropriate prophylactic approaches to treat halitosis and periodontitis. An intervention approach like selectively disrupting this interspecies network could also offer a powerful therapeutic strategy.IMPORTANCEHalitosis can have a significant impact on the social life of affected individuals. Among oral odor compounds, CH3SH has a low olfactory threshold and halitosis is a result of its production. Recently, there has been a growing interest in the collective properties of oral polymicrobial communities, regarded as important for the development of oral diseases, which are shaped by physical and metabolic interactions among community participants. However, it has yet to be investigated whether interspecies interactions have an impact on the production of volatile compounds, leading to the development of halitosis. The present findings provide mechanistic insights indicating that ornithine, a metabolite excreted by Streptococcus gordonii, promotes polyamine synthesis by Fusobacterium nucleatum, resulting in a compensatory increase in demand for methionine, which results in elevated methionine pathway activity and CH3SH production. Elucidation of the mechanisms related to CH3SH production is expected to lead to the development of new strategies for managing halitosis.


Asunto(s)
Halitosis , Periodontitis , Humanos , Fusobacterium nucleatum/genética , Halitosis/microbiología , Compuestos de Sulfhidrilo/metabolismo , Bacterias , Streptococcus gordonii , Ornitina/metabolismo , Metionina/metabolismo , Poliaminas/metabolismo
2.
mSystems ; 7(4): e0017022, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35852319

RESUMEN

Fusobacterium nucleatum is a common constituent of the oral microbiota in both periodontal health and disease. Previously, we discovered ornithine cross-feeding between F. nucleatum and Streptococcus gordonii, where S. gordonii secretes ornithine via an arginine-ornithine antiporter (ArcD), which in turn supports the growth and biofilm development of F. nucleatum; however, broader metabolic aspects of F. nucleatum within polymicrobial communities and their impact on periodontal pathogenesis have not been addressed. Here, we show that when cocultured with S. gordonii, F. nucleatum increased amino acid availability to enhance the production of butyrate and putrescine, a polyamine produced by ornithine decarboxylation. Coculture with Veillonella parvula, another common inhabitant of the oral microbiota, also increased lysine availability, promoting cadaverine production by F. nucleatum. We confirmed that ArcD-dependent S. gordonii-excreted ornithine induces synergistic putrescine production, and mass spectrometry imaging revealed that this metabolic capability creates a putrescine-rich microenvironment on the surface of F. nucleatum biofilms. We further demonstrated that polyamines caused significant changes in the biofilm phenotype of a periodontal pathogen, Porphyromonas gingivalis, with putrescine accelerating the biofilm life cycle of maturation and dispersal. This phenomenon was also observed with putrescine derived from S. gordonii-F. nucleatum coculture. Lastly, analysis of plaque samples revealed cooccurrence of P. gingivalis with genetic modules for putrescine production by S. gordonii and F. nucleatum. Overall, our results highlight the ability of F. nucleatum to induce synergistic polyamine production within multispecies consortia and provide insight into how the trophic web in oral biofilm ecosystems can eventually shape disease-associated communities. IMPORTANCE Periodontitis is caused by a pathogenic shift in subgingival biofilm ecosystems, which is accompanied by alterations in microbiome composition and function, including changes in the metabolic activity of the biofilm, which comprises multiple commensals and pathogens. While Fusobacterium nucleatum is a common constituent of the supra- and subgingival biofilms, its metabolic integration within polymicrobial communities and the impact on periodontal pathogenesis are poorly understood. Here, we report that amino acids supplied by other commensal bacteria induce polyamine production by F. nucleatum, creating polyamine-rich microenvironments. Polyamines reportedly have diverse functions in bacterial physiology and possible involvement in periodontal pathogenesis. We show that the F. nucleatum-integrated trophic network yielding putrescine from arginine through ornithine accelerates the biofilm life cycle of Porphyromonas gingivalis, a periodontal pathogen, from the planktonic state through biofilm formation to dispersal. This work provides insight into how cooperative metabolism within oral biofilms can tip the balance toward periodontitis.


Asunto(s)
Microbiota , Periodontitis , Humanos , Fusobacterium nucleatum/genética , Putrescina/metabolismo , Biopelículas , Porphyromonas gingivalis , Arginina/metabolismo , Ornitina/metabolismo
3.
Front Mol Biosci ; 9: 1074285, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36619162

RESUMEN

Atherosclerosis is a life-threatening disease associated with morbidity and mortality in patients with type 2 diabetes (T2D). This study aimed to characterize a salivary signature of atherosclerosis based on evaluation of carotid intima-media thickness (IMT) to develop a non-invasive predictive tool for diagnosis and disease follow-up. Metabolites in saliva and plasma samples collected at admission and after treatment from 25 T2D patients hospitalized for 2 weeks to undergo medical treatment for diabetes were comprehensively profiled using metabolomic profiling with gas chromatography-mass spectrometry. Orthogonal partial least squares analysis, used to explore the relationships of IMT with clinical markers and plasma and salivary metabolites, showed that the top predictors for IMT included salivary allantoin and 1,5-anhydroglucitol (1,5-AG) at both the baseline examination at admission and after treatment. Furthermore, though treatment induced alterations in salivary levels of allantoin and 1,5-AG, it did not modify the association between IMT and these metabolites (p interaction > 0.05), and models with these metabolites combined yielded satisfactory diagnostic accuracy for the high IMT group even after treatment (area under curve = 0.819). Collectively, this salivary metabolite combination may be useful for non-invasive identification of T2D patients with a higher atherosclerotic burden in clinical settings.

4.
Front Cell Infect Microbiol ; 11: 767944, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804997

RESUMEN

Recent studies have shown phenotypic and metabolic heterogeneity in related species including Streptococcus oralis, a typical oral commensal bacterium, Streptococcus mutans, a cariogenic bacterium, and Streptococcus gordonii, which functions as an accessory pathogen in periodontopathic biofilm. In this study, metabolites characteristically contained in the saliva of individuals with good oral hygiene were determined, after which the effects of an identified prebiotic candidate, D-tagatose, on phenotype, gene expression, and metabolic profiles of those three key bacterial species were investigated. Examinations of the saliva metabolome of 18 systemically healthy volunteers identified salivary D-tagatose as associated with lower dental biofilm abundance in the oral cavity (Spearman's correlation coefficient; r = -0.603, p = 0.008), then the effects of D-tagatose on oral streptococci were analyzed in vitro. In chemically defined medium (CDM) containing D-tagatose as the sole carbohydrate source, S. mutans and S. gordonii each showed negligible biofilm formation, whereas significant biofilms were formed in cultures of S. oralis. Furthermore, even in the presence of glucose, S. mutans and S. gordonii showed growth suppression and decreases in the final viable cell count in a D-tagatose concentration-dependent manner. In contrast, no inhibitory effects of D-tagatose on the growth of S. oralis were observed. To investigate species-specific inhibition by D-tagatose, the metabolomic profiles of D-tagatose-treated S. mutans, S. gordonii, and S. oralis cells were examined. The intracellular amounts of pyruvate-derived amino acids in S. mutans and S. gordonii, but not in S. oralis, such as branched-chain amino acids and alanine, tended to decrease in the presence of D-tagatose. This phenomenon indicates that D-tagatose inhibits growth of those bacteria by affecting glycolysis and its downstream metabolism. In conclusion, the present study provides evidence that D-tagatose is abundant in saliva of individuals with good oral health. Additionally, experimental results demonstrated that D-tagatose selectively inhibits growth of the oral pathogens S. mutans and S. gordonii. In contrast, the oral commensal S. oralis seemed to be negligibly affected, thus highlighting the potential of administration of D-tagatose as an oral prebiotic for its ability to manipulate the metabolism of those targeted oral streptococci.


Asunto(s)
Hexosas , Prebióticos , Biopelículas , Humanos , Especificidad de la Especie , Streptococcus gordonii , Streptococcus mutans
5.
Front Mol Biosci ; 8: 742002, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589520

RESUMEN

Periodontitis is an inflammatory disorder caused by disintegration of the balance between the periodontal microbiome and host response. While growing evidence suggests links between periodontitis and various metabolic disorders including type 2 diabetes (T2D), non-alcoholic liver disease, and cardiovascular disease (CVD), which often coexist in individuals with abdominal obesity, factors linking periodontal inflammation to common metabolic alterations remain to be fully elucidated. More detailed characterization of metabolomic profiles associated with multiple oral and cardiometabolic traits may provide better understanding of the complexity of oral-systemic crosstalk and its underlying mechanism. We performed comprehensive profiling of plasma and salivary metabolomes using untargeted gas chromatography/mass spectrometry to investigate multivariate covariation with clinical markers of oral and systemic health in 31 T2D patients with metabolic comorbidities and 30 control subjects. Orthogonal partial least squares (OPLS) results enabled more accurate characterization of associations among 11 oral and 25 systemic clinical outcomes, and 143 salivary and 78 plasma metabolites. In particular, metabolites that reflect cardiometabolic changes were identified in both plasma and saliva, with plasma and salivary ratios of (mannose + allose):1,5-anhydroglucitol achieving areas under the curve of 0.99 and 0.92, respectively, for T2D diagnosis. Additionally, OPLS analysis of periodontal inflamed surface area (PISA) as the numerical response variable revealed shared and unique responses of metabolomic and clinical markers to PISA between healthy and T2D groups. When combined with linear regression models, we found a significant correlation between PISA and multiple metabolites in both groups, including threonate, cadaverine and hydrocinnamate in saliva, as well as lactate and pentadecanoic acid in plasma, of which plasma lactate showed a predominant trend in the healthy group. Unique metabolites associated with PISA in the T2D group included plasma phosphate and salivary malate, while those in the healthy group included plasma gluconate and salivary adenosine. Remarkably, higher PISA was correlated with altered hepatic lipid metabolism in both groups, including higher levels of triglycerides, aspartate aminotransferase and alanine aminotransferase, leading to increased risk of cardiometabolic disease based on a score summarizing levels of CVD-related biomarkers. These findings revealed the potential utility of saliva for evaluating the risk of metabolic disorders without need for a blood test, and provide evidence that disrupted liver lipid metabolism may underlie the link between periodontitis and cardiometabolic disease.

6.
Arch Oral Biol ; 101: 135-141, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30928861

RESUMEN

OBJECTIVES: Phosphoryl oligosaccharides of calcium (POs-Ca) are a highly soluble calcium source and can keep the solubility of calcium and fluoride ions. The aim of this study was to investigate the effect of calcium (from POs-Ca) and fluoride ions penetrate into subsurface enamel lesions in vitro. DESIGN: Demineralized bovine enamel slabs were remineralizedin vitro for 24 h at 37 °C with artificial saliva (AS) containing POs-Ca and various fluoride concentrations (0-100 ppm), or AS containing different levels of POs-Ca adjusted to a Ca/P ratio of 0.4-3.0 and fluoride, then were analyzed using Transversal microradiography. From those results, remineralization effects with optimal conditions were compared between POs-Ca and calcium chloride (CaCl2). To determine the form of incorporated fluoride, we analyzed the chemical state and local structure of fluorine atoms integrated into enamel subsurface lesions using micro X-ray absorption near-edge structure (µ-XANES) spectroscopy. RESULTS: A significant mineral recovery rate was observed with POs-Ca and fluoride at 0.5 or 1.0 ppm (n = 6, p < 0.05), as well as a Ca/P molar ratio of 1.67 (n = 5, p < 0.05). Under those conditions, the mineral recovery rate of AS containing POs-Ca (37.9 ± 7.3%) was significantly greater than that of CaCl2 (15.0 ± 9.6%) (n = 5, mean ± SD, p < 0.05). µ-XANES spectra analysis of the samples indicated that the dominant form of fluorine atoms in enamel subsurface lesions was fluorapatite. CONCLUSIONS: POs-Ca with fluoride-derived diffusion into subsurface enamel lesions facilitated formation of fluorapatite phases.


Asunto(s)
Apatitas/química , Calcio/química , Fluoruros/química , Oligosacáridos/química , Remineralización Dental , Animales , Bovinos , Esmalte Dental , Técnicas In Vitro , Microrradiografía , Minerales , Desmineralización Dental
7.
Nat Microbiol ; 2(11): 1493-1499, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28924191

RESUMEN

Many human infections are polymicrobial in origin, and interactions among community inhabitants shape colonization patterns and pathogenic potential 1 . Periodontitis, which is the sixth most prevalent infectious disease worldwide 2 , ensues from the action of dysbiotic polymicrobial communities 3 . The keystone pathogen Porphyromonas gingivalis and the accessory pathogen Streptococcus gordonii interact to form communities in vitro and exhibit increased fitness in vivo 3,4 . The mechanistic basis of this polymicrobial synergy, however, has not been fully elucidated. Here we show that streptococcal 4-aminobenzoate/para-amino benzoic acid (pABA) is required for maximal accumulation of P. gingivalis in dual-species communities. Metabolomic and proteomic data showed that exogenous pABA is used for folate biosynthesis, and leads to decreased stress and elevated expression of fimbrial adhesins. Moreover, pABA increased the colonization and survival of P. gingivalis in a murine oral infection model. However, pABA also caused a reduction in virulence in vivo and suppressed extracellular polysaccharide production by P. gingivalis. Collectively, these data reveal a multidimensional aspect to P. gingivalis-S. gordonii interactions and establish pABA as a critical cue produced by a partner species that enhances the fitness of P. gingivalis while diminishing its virulence.


Asunto(s)
Infecciones por Bacteroidaceae/microbiología , Coinfección/microbiología , Interacciones Microbianas , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/patogenicidad , Infecciones Estreptocócicas/microbiología , Streptococcus gordonii/metabolismo , Ácido 4-Aminobenzoico/metabolismo , Ácido 4-Aminobenzoico/farmacología , Adhesinas Bacterianas/metabolismo , Animales , Adhesión Bacteriana , Biopelículas , Coinfección/metabolismo , Modelos Animales de Enfermedad , Disbiosis , Femenino , Humanos , Metabolómica , Ratones , Ratones Endogámicos BALB C , Periodontitis/microbiología , Porphyromonas gingivalis/efectos de los fármacos , Porphyromonas gingivalis/crecimiento & desarrollo , Proteómica , Streptococcus gordonii/efectos de los fármacos , Streptococcus gordonii/genética , Streptococcus gordonii/patogenicidad , Virulencia , para-Aminobenzoatos/metabolismo , para-Aminobenzoatos/farmacología
8.
Sci Rep ; 7: 42818, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28220901

RESUMEN

Onset of chronic periodontitis is associated with an aberrant polymicrobial community, termed dysbiosis. Findings regarding its etiology obtained using high-throughput sequencing technique suggested that dysbiosis holds a conserved metabolic signature as an emergent property. The purpose of this study was to identify robust biomarkers for periodontal inflammation severity. Furthermore, we investigated disease-associated metabolic signatures of periodontal microbiota using a salivary metabolomics approach. Whole saliva samples were obtained from adult subjects before and after removal of supragingival plaque (debridement). Periodontal inflamed surface area (PISA) was employed as an indicator of periodontal inflammatory status. Based on multivariate analyses using pre-debridement salivary metabolomics data, we found that metabolites associated with higher PISA included cadaverine and hydrocinnamate, while uric acid and ethanolamine were associated with lower PISA. Next, we focused on dental plaque metabolic byproducts by selecting salivary metabolites significantly decreased following debridement. Metabolite set enrichment analysis revealed that polyamine metabolism, arginine and proline metabolism, butyric acid metabolism, and lysine degradation were distinctive metabolic signatures of dental plaque in the high PISA group, which may be related to the metabolic signatures of disease-associated communities. Collectively, our findings identified potential biomarkers of periodontal inflammatory status and also provide insight into metabolic signatures of dysbiotic communities.


Asunto(s)
Periodontitis Crónica/patología , Placa Dental/metabolismo , Adulto , Área Bajo la Curva , Biomarcadores/metabolismo , Cadaverina/metabolismo , Periodontitis Crónica/metabolismo , Femenino , Humanos , Masculino , Metabolómica , Persona de Mediana Edad , Fenilpropionatos/metabolismo , Curva ROC , Saliva/metabolismo , Índice de Severidad de la Enfermedad
9.
Microb Pathog ; 94: 42-7, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26456558

RESUMEN

Porphyromonas gingivalis is deeply involved in the pathogenesis of marginal periodontitis, and recent findings have consolidated its role as an important and unique pathogen. This bacterium has a unique dual lifestyle in periodontal sites including subgingival dental plaque (biofilm) and gingival cells, as it has been clearly shown that P. gingivalis is able to exert virulence using completely different tactics in each environment. Inter-bacterial cross-feeding enhances the virulence of periodontal microflora, and such metabolic and adhesive interplay creates a supportive environment for P. gingivalis and other species. Human oral epithelial cells harbor a large intracellular bacterial load, resembling the polymicrobial nature of periodontal biofilm. P. gingivalis can enter gingival epithelial cells and pass through the epithelial barrier into deeper tissues. Subsequently, from its intracellular position, the pathogen exploits cellular recycling pathways to exit invaded cells, by which it is able to control its population in infected tissues, allowing for persistent infection in gingival tissues. Here, we outline the dual lifestyle of P. gingivalis in subgingival areas and its effects on the pathogenesis of periodontitis.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Encía/microbiología , Porphyromonas gingivalis/fisiología , Animales , Encía/patología , Humanos , Periodontitis/microbiología , Periodontitis/patología , Porphyromonas gingivalis/metabolismo
10.
J Biol Chem ; 290(35): 21185-98, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26085091

RESUMEN

Arginine is utilized by the oral inhabitant Streptococcus gordonii as a substrate of the arginine deiminase system (ADS), eventually producing ATP and NH3, the latter of which is responsible for microbial resistance to pH stress. S. gordonii expresses a putative arginine-ornithine antiporter (ArcD) whose function has not been investigated despite relevance to the ADS and potential influence on inter-bacterial communication with periodontal pathogens that utilize amino acids as a main energy source. Here, we generated an S. gordonii ΔarcD mutant to explore the role of ArcD in physiological homeostasis and bacterial cross-feeding. First, we confirmed that S. gordonii ArcD plays crucial roles for mediating arginine uptake and promoting bacterial growth, particularly under arginine-limited conditions. Next, metabolomic profiling and transcriptional analysis of the ΔarcD mutant revealed that deletion of this gene caused intracellular accumulation of ornithine leading to malfunction of the ADS and suppression of de novo arginine biosynthesis. The mutant strain also showed increased susceptibility to low pH stress due to reduced production of ammonia. Finally, accumulation of Fusobacterium nucleatum was found to be significantly decreased in biofilm formed by the ΔarcD mutant as compared with the wild-type strain, although ornithine supplementation restored fusobacterium biovolume in dual-species biofilms with the ΔarcD mutant and also enhanced single species biofilm development by F. nucleatum. Our results are the first direct evidence showing that S. gordonii ArcD modulates not only alkali and energy production but also interspecies interaction with F. nucleatum, thus initiating a middle stage of periodontopathic biofilm formation, by metabolic cross-feeding.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Antiportadores/metabolismo , Arginina/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas , Infecciones Estreptocócicas/microbiología , Streptococcus gordonii/fisiología , Sistemas de Transporte de Aminoácidos/genética , Antiportadores/genética , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Fusobacterium nucleatum/fisiología , Eliminación de Gen , Humanos , Interacciones Microbianas , Ornitina/metabolismo , Streptococcus gordonii/genética , Streptococcus gordonii/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...