Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Waste Manag Res ; 27(1): 3-18, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19220987

RESUMEN

A literature review has been undertaken to investigate the performance of the different anaerobic process configurations and operational conditions used in poultry and livestock waste treatment. The results of the extensive literature review showed that a wide range of different reactor volumes varying from 100 mL to 95 m3 were utilized in the investigation of anaerobic processing of poultry manure. Retention times studied were between 13.2 h and 91 days. Most of studies were carried out under mesophilic conditions maintained between 25 and 35 degrees C. Chemical oxygen demand (COD) removals and organic loading rate (OLR) ranged from 32 to 78%, and from 1.1 to 2.9 kg COD m(-3) day(-1), respectively. Biogas yields were achieved between 180 mL g(-1) COD added and 74 m3 day(-1) for a wide range of different reactor configurations. Up-flow anaerobic sludge blanket (UASB) seems to be a suitable process for the treatment of poultry manure wastewater and the liquid fraction of hen manure, due to its ability to maintain a sufficient amount of active biomass. The literature review showed that various reactor configurations such as fixed-film reactor, attached-film bioreactor, anaerobic rotating biological reactor, batch reactors, downflow anaerobic filter, fixed dome plant, UASB, continuously stirred tank reactor (CSTR), up-flow anaerobic filter (UAF), temperature-phased anaerobic digestion (TPAD), anaerobic hybrid reactor (AHR), and two-stage anaerobic systems are well suited to anaerobic processing of cattle manure. At both mesophilic and thermophilic conditions, high COD removals (87-95%) were achieved for treatment of cattle manure wastewaters. The COD and volatile solids (VS) reductions obtained were 37.9 to 94% and 9.6 to 92%, respectively. During the studies, OLR and retention times ranged between 0.117 and 7.3 g VS L(-1) day(-1) and between 0.5 and 140 days, respectively. In anaerobic processing of cattle manure, methane yields between 48 mmol CH4 L(-1) and 4681.3 m3 CH4 month(- 1) were found for the corresponding reactor volumes of 120 mL and 1300 m3, respectively. In anaerobic processing of swine manure, OLR ranged from 0.9 to 15.42 g VS L(-1) day(- 1) at mesophilic conditions (25-35 degrees C). The reactor volumes varied between 125 mL and 380 L. Temperature and retention times ranged from 25 to 60 degrees C, and 0.9 to 113 days, respectively. COD and VS reductions achieved were between 57 and 78% and between 34.5 and 61%, respectively. Moreover, methane yields were obtained between 22 and 360 mL CH4 g(-1) VS added. The results showed that UASB, anaerobic baffled reactors, CSTR, and anaerobic sequencing batch reactor (ASBR) were successfully utilized in anaerobic processing of swine manure at both mesophilic and thermophilic conditions.


Asunto(s)
Animales Domésticos , Estiércol , Aves de Corral , Administración de Residuos/métodos , Agricultura , Anaerobiosis , Animales
2.
J Hazard Mater ; 162(1): 120-32, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18554794

RESUMEN

The performance of electrocoagulation (EC) technique for decolorization and chemical oxygen demand (COD) reduction of anaerobically pretreated poultry manure wastewater was investigated in a laboratory batch study. Two identical 15.7-L up-flow anaerobic sludge blanket (UASB) reactors were first run under various organic and hydraulic loading conditions for 216 days. Effects of operating parameters such as type of sacrificial electrode material, time of electrolysis, current density, initial pH, and electrolyte concentration were further studied to optimize conditions for the post-treatment of UASB pretreated poultry manure wastewater. Preliminary tests conducted with two types of sacrificial electrodes (Al and Fe) resulted that Al electrodes were found to be more effective for both COD and color removals than Fe electrodes. The subsequent EC tests performed with Al electrodes showed that optimal operating conditions were determined to be an initial pH of 5.0, a current density of 15mA/cm(2), and an electrolysis time of 20min. The results indicated that under the optimal conditions, about 90% of COD and 92% of residual color could be effectively removed from the UASB effluent with the further contribution of the EC technology used as a post-treatment unit. In this study, the possible acute toxicity of the EC effluent was also evaluated by a static bioassay test procedure using guppy fish (Lebistes reticulatus). Findings of this study clearly indicated that incorporation of a toxicological test into conventional physicochemical analyses provided a better evaluation of final discharge characteristics.


Asunto(s)
Residuos Industriales/efectos adversos , Residuos Industriales/análisis , Estiércol/análisis , Oxígeno/análisis , Productos Avícolas , Eliminación de Residuos Líquidos , Anaerobiosis , Alimentación Animal , Animales , Electroquímica , Electrólisis , Peces/fisiología , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Poecilia , Aguas del Alcantarillado/análisis , Turquía
3.
J Hazard Mater ; 151(2-3): 547-58, 2008 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17643817

RESUMEN

The applicability of Fenton's oxidation as an advanced treatment for chemical oxygen demand (COD) and color removal from anaerobically treated poultry manure wastewater was investigated. The raw poultry manure wastewater, having a pH of 7.30 (+/-0.2) and a total COD of 12,100 (+/-910) mg/L was first treated in a 15.7 L of pilot-scale up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor was operated for 72 days at mesophilic conditions (32+/-2 degrees C) in a temperature-controlled environment with three different hydraulic retention times (HRT) of 15.7, 12 and 8.0 days, and with organic loading rates (OLR) between 0.650 and 1.783 kg COD/(m3day). Under 8.0 days of HRT, the UASB process showed a remarkable performance on total COD removal with a treatment efficiency of 90.7% at the day of 63. The anaerobically treated poultry manure wastewater was further treated by Fenton's oxidation process using Fe2+ and H2O2 solutions. Batch tests were conducted on the UASB effluent samples to determine the optimum operating conditions including initial pH, effects of H2O2 and Fe2+ dosages, and the ratio of H2O2/Fe2+. Preliminary tests conducted with the dosages of 100 mg Fe2+/L and 200 mg H2O2/L showed that optimal initial pH was 3.0 for both COD and color removal from the UASB effluent. On the basis of preliminary test results, effects of increasing dosages of Fe2+ and H2O2 were investigated. Under the condition of 400 mg Fe2+/L and 200 mg H2O2/L, removal efficiencies of residual COD and color were 88.7% and 80.9%, respectively. Under the subsequent condition of 100 mg Fe2+/L and 1200 mg H2O2/L, 95% of residual COD and 95.7% of residual color were removed from the UASB effluent. Results of this experimental study obviously indicated that nearly 99.3% of COD of raw poultry manure wastewater could be effectively removed by a UASB process followed by Fenton's oxidation technology used as a post-treatment unit.


Asunto(s)
Técnicas de Química Analítica/métodos , Peróxido de Hidrógeno/análisis , Hierro/análisis , Oxígeno/química , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Animales , Reactores Biológicos , Diseño de Equipo , Concentración de Iones de Hidrógeno , Estiércol/análisis , Modelos Químicos , Modelos Estadísticos , Aves de Corral , Temperatura
4.
J Hazard Mater ; 153(1-2): 532-43, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17913349

RESUMEN

A nonlinear modeling study was carried out to evaluate the performance of UASB reactors treating poultry manure wastewater under different organic and hydraulic loading conditions. Two identical pilot scale up-flow anaerobic sludge blanket (UASB) reactors (15.7 L) were run at mesophilic conditions (30-35 degrees C) in a temperature-controlled environment with three hydraulic retention times (theta) of 15.7, 12 and 8.0 days. Imposed volumetric organic loading rates (L(V)) ranged from 0.65 to 4.257 kg COD/(m(3) day). The pH of the feed varied between 6.68 and 7.82. The hydraulic loading rates (L(H)) were controlled between 0.105 and 0.21 m(3)/(m(2)day). The daily biogas production rates ranged between 4.2 and 29.4 L/day. High volumetric COD removal rates (R(V)) ranging from 0.546 to 3.779 kg COD(removed)/(m(3)day) were achieved. On the basis of experimental results, two empirical models having a satisfactory correlation coefficient of about 0.9954 and 0.9416 were developed to predict daily biogas production (Q(g)) and effluent COD concentration (S(e)), respectively. Findings of this modeling study showed that optimal COD removals ranging from 86.3% to 90.6% were predicted with HRTs of 7.9, 9.5, 11.2, 12.6, 13.7 and 14.3 days, and L(V) of 1.27, 1.58, 1.78, 1.99, 2.20 and 2.45 kg COD/(m(3)day) for the corresponding influent substrate concentrations (S(i)) of 10,000, 15,000, 20,000, 25,000, 30,000 and 35,000 mg/L, respectively.


Asunto(s)
Reactores Biológicos , Estiércol , Modelos Biológicos , Aves de Corral , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Animales , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...