Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37801013

RESUMEN

X-ray free-electron lasers (XFELs) deliver intense x-ray pulses that destroy the sample in a single shot by a Coulomb explosion. Experiments using XFEL pulse trains or the new generation of high-repetition rate XFELs require rapid sample replacement beyond those provided by the systems now used at low repletion-rate XFELs. We describe the development and characterization of a system based on a spinning disk to continuously deliver a solid sample into an XFEL interaction point at very high speeds. We tested our system at the Linac Coherent Light Source and European XFEL hard x-ray nano-focus instruments, employing it to deliver a 25 µm copper foil sample, which can be used as a gain medium for stimulated x-ray emission for the proposed x-ray laser oscillator.

2.
IUCrJ ; 6(Pt 3): 357-365, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31098017

RESUMEN

The routine atomic resolution structure determination of single particles is expected to have profound implications for probing structure-function relationships in systems ranging from energy-storage materials to biological molecules. Extremely bright ultrashort-pulse X-ray sources - X-ray free-electron lasers (XFELs) - provide X-rays that can be used to probe ensembles of nearly identical nanoscale particles. When combined with coherent diffractive imaging, these objects can be imaged; however, as the resolution of the images approaches the atomic scale, the measured data are increasingly difficult to obtain and, during an X-ray pulse, the number of photons incident on the 2D detector is much smaller than the number of pixels. This latter concern, the signal 'sparsity', materially impedes the application of the method. An experimental analog using a conventional X-ray source is demonstrated and yields signal levels comparable with those expected from single biomolecules illuminated by focused XFEL pulses. The analog experiment provides an invaluable cross check on the fidelity of the reconstructed data that is not available during XFEL experiments. Using these experimental data, it is established that a sparsity of order 1.3 × 10-3 photons per pixel per frame can be overcome, lending vital insight to the solution of the atomic resolution XFEL single-particle imaging problem by experimentally demonstrating 3D coherent diffractive imaging from photon-sparse random projections.

3.
J Synchrotron Radiat ; 21(Pt 4): 722-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24971966

RESUMEN

A method to characterize the spatial coherence of soft X-ray radiation from a single diffraction pattern is presented. The technique is based on scattering from non-redundant arrays (NRAs) of slits and records the degree of spatial coherence at several relative separations from 1 to 15 µm, simultaneously. Using NRAs the spatial coherence of the X-ray beam at the XUV X-ray beamline P04 of the PETRA III synchrotron storage ring was measured as a function of different beam parameters. To verify the results obtained with the NRAs, additional Young's double-pinhole experiments were conducted and showed good agreement.

4.
Opt Lett ; 39(18): 5281-4, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26466251

RESUMEN

We have characterized the x-ray phase vortices generated at the focal spot of various spiral Fresnel zone plates with an outermost zone width of Δr=50 nm. The complex-valued wavefields of phase vortices as small as 50 nm in size (FWHM) and several topological charges were reconstructed using ptychographic coherent diffractive imaging. The reconstructed focal spots demonstrate good agreement with the theoretically expected wavefields and diffraction-limited focusing.

5.
Opt Express ; 20(16): 17480-95, 2012 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23038301

RESUMEN

The experimental characterization of the spatial and temporal coherence properties of the free-electron laser in Hamburg (FLASH) at a wavelength of 8.0 nm is presented. Double pinhole diffraction patterns of single femtosecond pulses focused to a size of about 10×10 µm(2) were measured. A transverse coherence length of 6.2 ± 0.9 µm in the horizontal and 8.7 ± 1.0 µm in the vertical direction was determined from the most coherent pulses. Using a split and delay unit the coherence time of the pulses produced in the same operation conditions of FLASH was measured to be 1.75 ± 0.01 fs. From our experiment we estimated the degeneracy parameter of the FLASH beam to be on the order of 10(10) to 10(11), which exceeds the values of this parameter at any other source in the same energy range by many orders of magnitude.

6.
Phys Rev Lett ; 107(14): 144801, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-22107200

RESUMEN

Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser, the Linac Coherent Light Source, are presented. Single-shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in "diffract-and-destroy" mode. We determined a coherence length of 17 µm in the vertical direction, which is approximately the size of the focused Linac Coherent Light Source beam in the same direction. The analysis of the diffraction patterns produced by the pinholes with the largest separation yields an estimate of the temporal coherence time of 0.55 fs. We find that the total degree of transverse coherence is 56% and that the x-ray pulses are adequately described by two transverse coherent modes in each direction. This leads us to the conclusion that 78% of the total power is contained in the dominant mode.

7.
Opt Express ; 19(12): 11059-70, 2011 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-21716334

RESUMEN

The imaging of hydrated biological samples - especially in the energy window of 284-540 eV, where water does not obscure the signal of soft organic matter and biologically relevant elements - is of tremendous interest for life sciences. Free-electron lasers can provide highly intense and coherent pulses, which allow single pulse imaging to overcome resolution limits set by radiation damage. One current challenge is to match both the desired energy and the intensity of the light source. We present the first images of dehydrated biological material acquired with 3rd harmonic radiation from FLASH by digital in-line zone plate holography as one step towards the vision of imaging hydrated biological material with photons in the water window. We also demonstrate the first application of ultrathin molecular sheets as suitable substrates for future free-electron laser experiments with biological samples in the form of a rat fibroblast cell and marine biofouling bacteria Cobetia marina.


Asunto(s)
Bacterias/citología , Electrones , Fibroblastos/citología , Holografía/métodos , Rayos Láser , Microscopía/métodos , Agua/química , Animales , Nanoestructuras , Ratas , Agua de Mar/microbiología , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...