Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Mol Biol ; 110(3): 269-285, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35969295

RESUMEN

External application of ethanol enhances tolerance to high salinity, drought, and heat stress in various plant species. However, the effects of ethanol application on increased drought tolerance in woody plants, such as the tropical crop "cassava," remain unknown. In the present study, we analyzed the morphological, physiological, and molecular responses of cassava plants subjected to ethanol pretreatment and subsequent drought stress treatment. Ethanol pretreatment induced a slight accumulation of abscisic acid (ABA) and stomatal closure, resulting in a reduced transpiration rate, higher water content in the leaves during drought stress treatment and the starch accumulation in leaves. Transcriptomic analysis revealed that ethanol pretreatment upregulated the expression of ABA signaling-related genes, such as PP2Cs and AITRs, and stress response and protein-folding-related genes, such as heat shock proteins (HSPs). In addition, the upregulation of drought-inducible genes during drought treatment was delayed in ethanol-pretreated plants compared with that in water-pretreated control plants. These results suggest that ethanol pretreatment induces stomatal closure through activation of the ABA signaling pathway, protein folding-related response by activating the HSP/chaperone network and the changes in sugar and starch metabolism, resulting in increased drought avoidance in plants.


Asunto(s)
Manihot , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Sequías , Etanol/farmacología , Regulación de la Expresión Génica de las Plantas , Proteínas de Choque Térmico/genética , Manihot/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Estrés Fisiológico/genética , Azúcares/metabolismo , Agua/metabolismo
2.
Plant Cell Physiol ; 63(9): 1181-1192, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36003026

RESUMEN

Water scarcity is a serious agricultural problem causing significant losses to crop yield and product quality. The development of technologies to mitigate the damage caused by drought stress is essential for ensuring a sustainable food supply for the increasing global population. We herein report that the exogenous application of ethanol, an inexpensive and environmentally friendly chemical, significantly enhances drought tolerance in Arabidopsis thaliana, rice and wheat. The transcriptomic analyses of ethanol-treated plants revealed the upregulation of genes related to sucrose and starch metabolism, phenylpropanoids and glucosinolate biosynthesis, while metabolomic analysis showed an increased accumulation of sugars, glucosinolates and drought-tolerance-related amino acids. The phenotyping analysis indicated that drought-induced water loss was delayed in the ethanol-treated plants. Furthermore, ethanol treatment induced stomatal closure, resulting in decreased transpiration rate and increased leaf water contents under drought stress conditions. The ethanol treatment did not enhance drought tolerance in the mutant of ABI1, a negative regulator of abscisic acid (ABA) signaling in Arabidopsis, indicating that ABA signaling contributes to ethanol-mediated drought tolerance. The nuclear magnetic resonance analysis using 13C-labeled ethanol indicated that gluconeogenesis is involved in the accumulation of sugars. The ethanol treatment did not enhance the drought tolerance in the aldehyde dehydrogenase (aldh) triple mutant (aldh2b4/aldh2b7/aldh2c4). These results show that ABA signaling and acetic acid biosynthesis are involved in ethanol-mediated drought tolerance and that chemical priming through ethanol application regulates sugar accumulation and gluconeogenesis, leading to enhanced drought tolerance and sustained plant growth. These findings highlight a new survival strategy for increasing crop production under water-limited conditions.


Asunto(s)
Arabidopsis , Sequías , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Etanol/metabolismo , Regulación de la Expresión Génica de las Plantas , Estomas de Plantas/fisiología , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Azúcares/metabolismo , Agua/metabolismo
3.
Plant Physiol ; 189(2): 922-933, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35201346

RESUMEN

Plants perceive volatiles emitted from herbivore-damaged neighboring plants to urgently adapt or prime their defense responses to prepare for forthcoming herbivores. Mechanistically, these volatiles can induce epigenetic regulation based on histone modifications that alter the transcriptional status of defense genes, but little is known about the underlying mechanisms. To understand the roles of such epigenetic regulation of plant volatile signaling, we explored the response of Arabidopsis (Arabidopsis thaliana) plants to the volatile ß-ocimene. Defense traits of Arabidopsis plants toward larvae of Spodoptera litura were induced in response to ß-ocimene, through enriched histone acetylation and elevated transcriptional levels of defense gene regulators, including ethylene response factor genes (ERF8 and ERF104) in leaves. The enhanced defense ability of the plants was maintained for 5 d but not over 10 d after exposure to ß-ocimene, and this coincided with elevated expression of those ERFs in their leaves. An array of histone acetyltransferases, including HAC1, HAC5, and HAM1, were responsible for the induction and maintenance of the anti-herbivore property. HDA6, a histone deacetylase, played a role in the reverse histone remodeling. Collectively, our findings illuminate the role of epigenetic regulation in plant volatile signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Compuestos Orgánicos Volátiles , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arseniato Reductasas/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Herbivoria , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Plantas/metabolismo , Spodoptera/fisiología , Compuestos Orgánicos Volátiles/metabolismo
4.
Plant Biotechnol (Tokyo) ; 38(3): 339-344, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34782821

RESUMEN

Abiotic stresses, such as high light and salinity, are major factors that limit crop productivity and sustainability worldwide. Chemical priming is a promising strategy for improving the abiotic stress tolerance of plants. Recently, we discovered that ethanol enhances high-salinity stress tolerance in Arabidopsis thaliana and rice by detoxifying reactive oxygen species (ROS). However, the effect of ethanol on other abiotic stress responses is unclear. Therefore, we investigated the effect of ethanol on the high-light stress response. Measurement of chlorophyll fluorescence showed that ethanol mitigates photoinhibition under high-light stress. Staining with 3,3'-diaminobenzidine (DAB) showed that the accumulation of hydrogen peroxide (H2O2) was inhibited by ethanol under high-light stress conditions in A. thaliana. We found that ethanol increased the gene expressions and enzymatic activities of antioxidative enzymes, including ASCORBATE PEROXIDASE1 (AtAPX1), Catalase (AtCAT1 and AtCAT2). Moreover, the expression of flavonoid biosynthetic genes and anthocyanin contents were upregulated by ethanol treatment during exposure to high-light stress. These results imply that ethanol alleviates oxidative damage from high-light stress in A. thaliana by suppressing ROS accumulation. Our findings support the hypothesis that ethanol improves tolerance to multiple stresses in field-grown crops.

5.
Plants (Basel) ; 10(5)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34068843

RESUMEN

Salinity stress is a major threat to agriculture and global food security. Chemical priming is a promising approach to improving salinity stress tolerance in plants. To identify small molecules with the capacity to enhance salinity stress tolerance in plants, chemical screening was performed using Arabidopsis thaliana. We screened 6400 compounds from the Nagoya University Institute of Transformative Bio-Molecule (ITbM) chemical library and identified one compound, Natolen128, that enhanced salinity-stress tolerance. Furthermore, we isolated a negative compound of Natolen128, namely Necolen124, that did not enhance salinity stress tolerance, though it has a similar chemical structure to Natolen128. We conducted a transcriptomic analysis of Natolen128 and Necolen124 to investigate how Natolen128 enhances high-salinity stress tolerance. Our data indicated that the expression levels of 330 genes were upregulated by Natolen128 treatment compared with that of Necolen124. Treatment with Natolen128 increased expression of hypoxia-responsive genes including ethylene biosynthetic enzymes and PHYTOGLOBIN, which modulate accumulation of nitric oxide (NO) level. NO was slightly increased in plants treated with Natolen128. These results suggest that Natolen128 may regulate NO accumulation and thus, improve salinity stress tolerance in A. thaliana.

6.
Plant Cell Physiol ; 61(12): 1995-2003, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32966567

RESUMEN

Abiotic stress is considered a major factor limiting crop yield and quality. The development of effective strategies that mitigate abiotic stress is essential for sustainable agriculture and food security, especially with continuing global population growth. Recent studies have demonstrated that exogenous treatment of plants with chemical compounds can enhance abiotic stress tolerance by inducing molecular and physiological defense mechanisms, a process known as chemical priming. Chemical priming is believed to represent a promising strategy for mitigating abiotic stress in crop plants. Plants biosynthesize various compounds, such as phytohormones and other metabolites, to adapt to adverse environments. Research on artificially synthesized compounds has also resulted in the identification of novel compounds that improve abiotic stress tolerance. In this review, we summarize current knowledge of both naturally synthesized and artificial priming agents that have been shown to increase the abiotic stress tolerance of plants.


Asunto(s)
Fenómenos Fisiológicos de las Plantas/efectos de los fármacos , Producción de Cultivos , Productos Agrícolas/efectos de los fármacos , Productos Agrícolas/fisiología , Epigénesis Genética/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Plantas/efectos de los fármacos , Plantas/metabolismo , Estrés Fisiológico
7.
Sci Rep ; 10(1): 8691, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457324

RESUMEN

Chemical priming is an attractive and promising approach to improve abiotic stress tolerance in a broad variety of plant species. We screened the RIKEN Natural Products Depository (NPDepo) chemical library and identified a novel compound, FSL0260, enhancing salinity-stress tolerance in Arabidopsis thaliana and rice. Through transcriptome analysis using A. thaliana seedlings, treatment of FSL0260 elevated an alternative respiration pathway in mitochondria that modulates accumulation of reactive oxygen species (ROS). From comparison analysis, we realized that the alternative respiration pathway was induced by treatment of known mitochondrial inhibitors. We confirmed that known inhibitors of mitochondrial complex I, such as rotenone and piericidin A, also enhanced salt-stress tolerance in Arabidopsis. We demonstrated that FSL0260 binds to complex I of the mitochondrial electron transport chain and inhibits its activity, suggesting that inhibition of mitochondrial complex I activates an alternative respiration pathway resulting in reduction of ROS accumulation and enhancement of tolerance to salinity in plants. Furthermore, FSL0260 preferentially inhibited plant mitochondrial complex I rather than a mammalian complex, implying that FSL0260 has a potential to be an agent for improving salt-stress tolerance in agriculture that is low toxicity to humans.


Asunto(s)
Arabidopsis/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Tolerancia a la Sal/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rotenona/farmacología , Plantones/efectos de los fármacos , Plantones/metabolismo , Cloruro de Sodio/farmacología
8.
Commun Biol ; 2: 404, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31701032

RESUMEN

Plant somatic cells reprogram and regenerate new tissues or organs when they are severely damaged. These physiological processes are associated with dynamic transcriptional responses but how chromatin-based regulation contributes to wound-induced gene expression changes and subsequent cellular reprogramming remains unknown. In this study we investigate the temporal dynamics of the histone modifications H3K9/14ac, H3K27ac, H3K4me3, H3K27me3, and H3K36me3, and analyze their correlation with gene expression at early time points after wounding. We show that a majority of the few thousand genes rapidly induced by wounding are marked with H3K9/14ac and H3K27ac before and/or shortly after wounding, and these include key wound-inducible reprogramming genes such as WIND1, ERF113/RAP2.6 L and LBD16. Our data further demonstrate that inhibition of GNAT-MYST-mediated histone acetylation strongly blocks wound-induced transcriptional activation as well as callus formation at wound sites. This study thus uncovered a key epigenetic mechanism that underlies wound-induced cellular reprogramming in plants.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Código de Histonas/genética , Acetilación , Arabidopsis/citología , Proteínas de Arabidopsis/metabolismo , Reprogramación Celular/genética , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Enfermedades de las Plantas/genética , Plantas Modificadas Genéticamente , Activación Transcripcional
9.
Plant Signal Behav ; 13(8): e1500065, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30067446

RESUMEN

High-salinity stress affects plant growth and crop yield, so the development of techniques to enhance plant tolerance to such stress is important. Recently, we revealed that ethanol enhances high-salinity stress tolerance in Arabidopsis thaliana and rice by detoxifying Reactive Oxygen Species (ROS). However, we did not investigate how long salt stress tolerance was maintained following treatment with ethanol. Therefore, we herein analyzed survival rates and expression levels of AtZAT12, which is a transcriptional factor of ROS detoxification enzymes, under different conditions in Arabidopsis. Our results showed that ethanol-mediated high-salinity stress tolerance was lost after a 24 h break in ethanol treatment in ~ 1-week-old plants. Although ethanol enhanced salt stress tolerance, high concentrations of ethanol negatively affected plant growth. Thus, these data support the idea that adjustments of the frequency and amount of ethanol application to plants is useful to enhance salt stress tolerance without growth inhibition in the agricultural field.


Asunto(s)
Arabidopsis/metabolismo , Etanol/toxicidad , Arabidopsis/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/metabolismo , Salinidad , Estrés Salino/efectos de los fármacos , Tolerancia a la Sal
10.
Plant Signal Behav ; 13(3): e1448333, 2018 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-29517946

RESUMEN

Histone acetylation plays a pivotal role in plant growth and development, and is regulated by the antagonistic relationship between histone acetyltransferase (HAT) and histone deacetylase (HDAC). We previously revealed that some HDAC inhibitors confer high-salinity stress tolerance in plants. In this study, we identified two HDAC inhibitors, namely Ky-9 and Ky-72, which enhanced the high-salinity stress tolerance of Arabidopsis thaliana. Ky-9 and Ky-72 are structurally similar chlamydocin analogs. However, the in vitro inhibitory activity of Ky-9 against mammalian HDAC is greater than that of Ky-72. A western blot indicated that Ky-9 and Ky-72 increased the acetylation levels of histone H3, suggesting they exhibit HDAC inhibitory activities in plants. We conducted a transcriptomic analysis to investigate how Ky-9 and Ky-72 enhance high-salinity stress tolerance. Although Ky-9 upregulated the expression of more genes than Ky-72, similar gene expression patterns were induced by both HDAC inhibitors. Additionally, the expression of high-salinity stress tolerance-related genes, such as anthocyanin-related genes and a small peptide-encoding gene, increased by Ky-9 and Ky-72. These data suggest that slight structural differences in chemical side chain between HDAC inhibitors can alter inhibitory effect on HDAC protein leading to influence gene expression, thereby enhancing high-salinity stress tolerance in different extent.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Perfilación de la Expresión Génica , Inhibidores de Histona Desacetilasas/farmacología , Péptidos Cíclicos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Inhibidores de Histona Desacetilasas/química , Péptidos Cíclicos/química , Tolerancia a la Sal/efectos de los fármacos , Tolerancia a la Sal/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
11.
Plant Physiol ; 175(4): 1760-1773, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29018096

RESUMEN

Histone acetylation is an essential process in the epigenetic regulation of diverse biological processes, including environmental stress responses in plants. Previously, our research group identified a histone deacetylase (HDAC) inhibitor (HDI) that confers salt tolerance in Arabidopsis (Arabidopsis thaliana). In this study, we demonstrate that class I HDAC (HDA19) and class II HDACs (HDA5/14/15/18) control responses to salt stress through different pathways. The screening of 12 different selective HDIs indicated that seven newly reported HDIs enhance salt tolerance. Genetic analysis, based on a pharmacological study, identified which HDACs function in salinity stress tolerance. In the wild-type Columbia-0 background, hda19 plants exhibit tolerance to high-salinity stress, while hda5/14/15/18 plants exhibit hypersensitivity to salt stress. Transcriptome analysis revealed that the effect of HDA19 deficiency on the response to salinity stress is distinct from that of HDA5/14/15/18 deficiencies. In hda19 plants, the expression levels of stress tolerance-related genes, late embryogenesis abundant proteins that prevent protein aggregation and positive regulators such as ABI5 and NAC019 in abscisic acid signaling, were induced strongly relative to the wild type. Neither of these elements was up-regulated in the hda5/14/15/18 plants. The mutagenesis of HDA19 by genome editing in the hda5/14/15/18 plants enhanced salt tolerance, suggesting that suppression of HDA19 masks the phenotype caused by the suppression of class II HDACs in the salinity stress response. Collectively, our results demonstrate that HDIs that inhibit class I HDACs allow the rescue of plants from salinity stress regardless of their selectivity, and they provide insight into the hierarchal regulation of environmental stress responses through HDAC isoforms.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Histona Desacetilasas/metabolismo , Proteínas de Plantas/metabolismo , Salinidad , Sistemas CRISPR-Cas , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Histona Desacetilasas/genética , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/genética , Cloruro de Sodio/toxicidad , Estrés Fisiológico
12.
Front Plant Sci ; 8: 1001, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28717360

RESUMEN

High-salinity stress considerably affects plant growth and crop yield. Thus, developing techniques to enhance high-salinity stress tolerance in plants is important. In this study, we revealed that ethanol enhances high-salinity stress tolerance in Arabidopsis thaliana and rice. To elucidate the molecular mechanism underlying the ethanol-induced tolerance, we performed microarray analyses using A. thaliana seedlings. Our data indicated that the expression levels of 1,323 and 1,293 genes were upregulated by ethanol in the presence and absence of NaCl, respectively. The expression of reactive oxygen species (ROS) signaling-related genes associated with high-salinity tolerance was upregulated by ethanol under salt stress condition. Some of these genes encode ROS scavengers and transcription factors (e.g., AtZAT10 and AtZAT12). A RT-qPCR analysis confirmed that the expression levels of AtZAT10 and AtZAT12 as well as AtAPX1 and AtAPX2, which encode cytosolic ascorbate peroxidases (APX), were higher in ethanol-treated plants than in untreated control plants, when exposure to high-salinity stress. Additionally, A. thaliana cytosolic APX activity increased by ethanol in response to salinity stress. Moreover, histochemical analyses with 3,3'-diaminobenzidine (DAB) and nitro blue tetrazolium (NBT) revealed that ROS accumulation was inhibited by ethanol under salt stress condition in A. thaliana and rice, in which DAB staining data was further confirmed by Hydrogen peroxide (H2O2) content. These results suggest that ethanol enhances high-salinity stress tolerance by detoxifying ROS. Our findings may have implications for improving salt-stress tolerance of agriculturally important field-grown crops.

13.
Sci Rep ; 7: 45894, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28418019

RESUMEN

Proper regulation of histone acetylation is important in development and cellular responses to environmental stimuli. However, the dynamics of histone acetylation at the single-cell level remains poorly understood. Here we established a transgenic plant cell line to track histone H3 lysine 9 acetylation (H3K9ac) with a modification-specific intracellular antibody (mintbody). The H3K9ac-specific mintbody fused to the enhanced green fluorescent protein (H3K9ac-mintbody-GFP) was introduced into tobacco BY-2 cells. We successfully demonstrated that H3K9ac-mintbody-GFP interacted with H3K9ac in vivo. The ratio of nuclear/cytoplasmic H3K9ac-mintbody-GFP detected in quantitative analysis reflected the endogenous H3K9ac levels. Under chemically induced hyperacetylation conditions with histone deacetylase inhibitors including trichostatin A, Ky-2 and Ky-14, significant enhancement of H3K9ac was detected by H3K9ac-mintbody-GFP dependent on the strength of inhibitors. Conversely, treatment with a histone acetyltransferase inhibitor, C646 caused a reduction in the nuclear to cytoplasmic ratio of H3K9ac-mintbody-GFP. Using this system, we assessed the environmental responses of H3K9ac and found that cold and salt stresses enhanced H3K9ac in tobacco BY-2 cells. In addition, a combination of H3K9ac-mintbody-GFP with 5-ethynyl-2'-deoxyuridine labelling confirmed that H3K9ac level is constant during interphase.


Asunto(s)
Histona Acetiltransferasas/genética , Nicotiana/metabolismo , Células Vegetales/ultraestructura , Procesamiento Proteico-Postraduccional/genética , Acetilación/efectos de los fármacos , Anticuerpos/inmunología , Anticuerpos/metabolismo , Benzoatos/farmacología , Proteínas Fluorescentes Verdes/química , Histona Acetiltransferasas/inmunología , Histona Acetiltransferasas/ultraestructura , Inhibidores de Histona Desacetilasas/farmacología , Histonas/inmunología , Nitrobencenos , Células Vegetales/metabolismo , Plantas Modificadas Genéticamente , Pirazoles/farmacología , Pirazolonas , Nicotiana/genética , Nicotiana/crecimiento & desarrollo
14.
Am J Vet Res ; 77(4): 346-50, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27027832

RESUMEN

OBJECTIVE: To determine the temporal effects on tear flow measurements obtained by use of a Schirmer tear test (STT) I after IM administration of various doses of medetomidine or xylazine to healthy dogs. ANIMALS: 5 healthy purpose-bred male Beagles. PROCEDURES: Each dog received IM injections of 2.0 mL of physiologic saline (0.9% NaCl) solution (control treatment); 0.1% medetomidine hydrochloride (5, 10, 20, and 40 µg/kg), and 2.0% xylazine hydrochloride (0.5, 1.0, 2.0, and 4.0 mg/kg). Treatments were injected into the semimembranosus muscles; there was at least a 1-week interval between successive injections. Order of treatments was determined via a randomized Latin square crossover design. The STT I was performed on both eyes before (baseline) and 0.25, 0.50, 0.75, 1, 2, 3, 4, 5, 6, 7, 8, and 24 hours after each injection. RESULTS: STT I values decreased significantly within 45 minutes after injection of medetomidine or xylazine, which was followed by gradual recovery. The lowest mean STT I value was < 10 mm/min for all sedation treatments, except when dogs received 5 µg of medetomidine/kg. Linear regression of the area under the curve for the 8 hours after administration yielded significant effects for all sedation treatments. CONCLUSIONS AND CLINICAL RELEVANCE: IM administration of medetomidine or xylazine to dogs reduced tear flow in a dose-related manner. Artificial tear solution or ophthalmic ointment should be used to protect the ocular surface when these drugs are administered to dogs.


Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Medetomidina/farmacología , Lágrimas/efectos de los fármacos , Xilazina/farmacología , Antagonistas de Receptores Adrenérgicos alfa 2/administración & dosificación , Animales , Perros , Relación Dosis-Respuesta a Droga , Inyecciones Intramusculares/veterinaria , Masculino , Medetomidina/administración & dosificación , Xilazina/administración & dosificación
15.
Plant Cell Physiol ; 57(4): 776-83, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26657894

RESUMEN

Adaptation to environmental stress requires genome-wide changes in gene expression. Histone modifications are involved in gene regulation, but the role of histone modifications under environmental stress is not well understood. To reveal the relationship between histone modification and environmental stress, we assessed the effects of inhibitors of histone modification enzymes during salinity stress. Treatment with Ky-2, a histone deacetylase inhibitor, enhanced high-salinity stress tolerance in Arabidopsis. We confirmed that Ky-2 possessed inhibition activity towards histone deacetylases by immunoblot analysis. To investigate how Ky-2 improved salt stress tolerance, we performed transcriptome and metabolome analysis. These data showed that the expression of salt-responsive genes and salt stress-related metabolites were increased by Ky-2 treatment under salinity stress. A mutant deficient in AtSOS1(Arabidopis thaliana SALT OVERLY SENSITIVE 1), which encodes an Na(+)/H(+)antiporter and was among the up-regulated genes, lost the salinity stress tolerance conferred by Ky-2. We confirmed that acetylation of histone H4 at AtSOS1 was increased by Ky-2 treatment. Moreover, Ky-2 treatment decreased the intracellular Na(+)accumulation under salinity stress, suggesting that enhancement of SOS1-dependent Na(+)efflux contributes to increased high-salinity stress tolerance caused by Ky-2 treatment.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Inhibidores de Histona Desacetilasas/farmacología , Péptidos Cíclicos/farmacología , Estrés Fisiológico/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Histonas/metabolismo , Mutación , Poliaminas/metabolismo , Prolina/metabolismo , Salinidad , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Estrés Fisiológico/genética
16.
Front Plant Sci ; 6: 114, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25784920

RESUMEN

Chromatin regulation is essential to regulate genes and genome activities. In plants, the alteration of histone modification and DNA methylation are coordinated with changes in the expression of stress-responsive genes to adapt to environmental changes. Several chromatin regulators have been shown to be involved in the regulation of stress-responsive gene networks under abiotic stress conditions. Specific histone modification sites and the histone modifiers that regulate key stress-responsive genes have been identified by genetic and biochemical approaches, revealing the importance of chromatin regulation in plant stress responses. Recent studies have also suggested that histone modification plays an important role in plant stress memory. In this review, we summarize recent progress on the regulation and alteration of histone modification (acetylation, methylation, phosphorylation, and SUMOylation) in response to the abiotic stresses, drought, high-salinity, heat, and cold in plants.

17.
J Proteome Res ; 13(7): 3223-30, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24846764

RESUMEN

The 26S proteasome is an ATP-dependent proteinase complex that is responsible for regulated proteolysis of polyubiquitinated proteins in eukaryotic cells. Here, we report novel 26S proteasome interacting proteins in Arabidopsis as revealed by LC-MS/MS analysis. We performed a two-step screening process that involved affinity purification of the 26S proteasome using Arabidopsis plants expressing a FLAG-tagged RPT2a subunit and partial purification of the 26S proteasome from cultured cells by glycerol density gradient centrifugation (GDG). Two plastid proteins, LTA2 and PDH E1α, which were commonly identified by both affinity purification and GDG, interacted with the 26S proteasome both in vitro and in vivo, and the transit peptides of LTA2 and PDH E1α were necessary for the interaction. Furthermore, the degradation of both LTA2 and PDH E1α was inhibited by MG132, a proteasome inhibitor. Similar to those two proteins, 26S proteasome subunits RPT2a/b and RPT5a interacted with the transit peptides of three other chloroplast proteins, which are known to be substrates of the ubiquitin-26S proteasome system. These results suggest that a direct interaction between the 26S proteasome and a transit peptide is important for the degradation of unimported plastid protein precursors to maintain cellular homeostasis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Fragmentos de Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Precursores de Proteínas/metabolismo , Proteolisis , Arabidopsis/metabolismo , Mapeo de Interacción de Proteínas , Proteómica , Plantones/metabolismo , Espectrometría de Masas en Tándem
18.
Methods Mol Biol ; 1072: 655-63, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24136554

RESUMEN

The ubiquitin-26S proteasome system (UPS) plays a crucial role in selective removal of short-lived target proteins, archiving fine-tuning of post-translation levels of the target proteins. Recently a number of ubiquitin ligases (E3) have been reported as essential regulators of various plant developmental cues and stress responses. To clarify the detailed biochemical and physiological function of the E3 proteins, identification of their target proteins is of great importance. A transient expression system with tobacco leaves is a powerful method to evaluate E3 function and target degradation via UPS. Here simple methods to assay proteasome-dependent protein degradation combined with a tobacco transient expression system and detection of accumulation of ubiquitinated proteins are presented.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Bioensayo/métodos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas Ubiquitinadas/metabolismo , Agrobacterium/metabolismo , Arabidopsis/metabolismo , Leupeptinas/farmacología , Proteolisis/efectos de los fármacos , Nicotiana/metabolismo , Ubiquitina/metabolismo
20.
PLoS One ; 7(5): e37086, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22615900

RESUMEN

The ubiquitin/proteasome pathway plays a crucial role in many biological processes. Here we report a novel role for the Arabidopsis 19S proteasome subunit RPT2a in regulating gene activity at the transcriptional level via DNA methylation. Knockout mutation of the RPT2a gene did not alter global protein levels; however, the transcriptional activities of reporter transgenes were severely reduced compared to those in the wild type. This transcriptional gene silencing (TGS) was observed for transgenes under control of either the constitutive CaMV 35S promoter or the cold-inducible RD29A promoter. Bisulfite sequencing analysis revealed that both the transgene and endogenous RD29A promoter regions were hypermethylated at CG and non-CG contexts in the rpt2a mutant. Moreover, the TGS of transgenes driven by the CaMV 35S promoters was released by treatment with the DNA methylation inhibitor 5-aza-2'-deoxycytidine, but not by application of the inhibitor of histone deacetylase Trichostatin A. Genetic crosses with the DNA methyltransferase met1 single or drm1drm2cmt3 triple mutants also resulted in a release of CaMV 35S transgene TGS in the rpt2a mutant background. Increased methylation was also found at transposon sequences, suggesting that the 19S proteasome containing AtRPT2a negatively regulates TGS at transgenes and at specific endogenous genes through DNA methylation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Metilación de ADN , Silenciador del Gen , Complejo de la Endopetidasa Proteasomal/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Histona Desacetilasas/metabolismo , Mutación , Regiones Promotoras Genéticas , Transcripción Genética , Transgenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...