Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nutr Metab ; 2021: 1825209, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34094596

RESUMEN

Background and Objectives. The gut microbiota has been shown to be involved in the development and severity of type 2 diabetes (T2D). The aim of the present study was to test the effect of potential functional food ingredients, alone or in combination, on the gut microbiota composition in diabetic rats in a pilot study of 1 week of feeding. Methods. In a pilot study to modulate the composition of the gut microbiota, (i) native taro starch, (ii) modified taro starch, (iii) beet juice, (iv) psicose, (v) the probiotic L. plantarum IS-10506, (vi) native starch combined with beet juice, (vii) native starch to which beet juice was adsorbed, (viii) modified starch combined with beet juice, and (ix) modified starch to which beet juice was adsorbed were fed to rats in which T2D was induced with streptozotocin (STZ). After one week, the composition of the gut microbiota was evaluated by sequencing the PCR-amplified V3-V4 region of the 16S rRNA gene. Results and Conclusions. The next-generation sequencing showed that 13 microbial taxa of the gut microbiota were significantly different between groups, depending on the treatment. The results of this pilot study will be used to design a 4-week intervention study in STZ-induced T2D rats to determine the best functional food for counteracting T2D, including their effects on satiety hormones. This should ultimately lead to the development of functional foods for prediabetic and diabetic individuals.

2.
Nutr Metab (Lond) ; 17: 77, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32968426

RESUMEN

BACKGROUND: The gut microbiota has been shown to be involved in the development and severity of type 2 diabetes. The aim of the present study was to test the effect of 4-week functional food ingredient feeding, alone or in combination, on the gut microbiota composition in diabetic rats. METHODS: Streptozotocin (STZ)-induced diabetic rats were treated for 4 weeks with (1) native taro starch, (2) modified taro-starch, (3) beet juice, (4) psicose, (5) the probiotic L. plantarum IS-10506, (6) native starch combined with beet juice, (7) native starch to which beet juice was adsorbed, (8) modified starch combined with beet juice or (9) modified starch to which beet juice was adsorbed, to modulate the composition of the gut microbiota. This composition was evaluated by sequencing the PCR amplified V3-V4 region of the 16S rRNA gene. RESULTS: The next-generation sequencing showed beneficial effects particularly of taro-starch feeding. Operational taxonomic units (OTUs) related to health (e.g. correlating with low BMI, OTUs producing butyrate) were increased in relative abundance, while OTUs generally correlated with disease (e.g. Proteobacteria) were decreased by feeding taro-starch. CONCLUSION: The results of study show that a 4-week intervention with functional food ingredients, particularly taro-derived starch, leads to a more healthy gut microbiota in rats that were induced to be diabetic by induction with STZ.

3.
Protein Expr Purif ; 175: 105692, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32681957

RESUMEN

A low-calorie sugar-substituting sweetener, d-tagatose, can be produced by l-arabinose isomerase (l-AI) from the substrate d-galactose. However, this process suffers from a Maillard reaction when performed at alkaline pH and high temperature. For industrial applications, therefore, a reaction under slightly acidic conditions is desirable to minimize the Maillard reaction. Previously, we obtained a mutant of l-AI, H18T, from Geobacillus stearothermophilus with greater substrate specificity. Although H18T possessed excellent thermostability, its activity under acidic conditions was not optimal. Here, we successfully obtained a potential variant of the H18T protein, H18T-Y234C, which achieved improved activity at pH 6.0, based on random mutagenesis using error-prone PCR around the binding pocket area of H18T. This double H18T-Y234C mutant possessed 1.8-fold and 3-fold higher activity at pH 6.0 than the parent H18T and the wild type, thereby broadening the optimal pH range to 6.0-8.0. Mutation from Tyr to Cys at residue 234 had little effect on the secondary structure of L-AI. Furthermore, the formation of disulfide bonds was not detected. Thus, the improvement of activity at pH 6.0 is probably caused by the change in the binding pocket area involving residue 234. This study offers insight into the importance of residue 234 in improving the activity under acidic conditions.


Asunto(s)
Isomerasas Aldosa-Cetosa , Proteínas Bacterianas , Expresión Génica , Geobacillus stearothermophilus/genética , Isomerasas Aldosa-Cetosa/biosíntesis , Isomerasas Aldosa-Cetosa/química , Isomerasas Aldosa-Cetosa/genética , Isomerasas Aldosa-Cetosa/aislamiento & purificación , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Estabilidad de Enzimas , Geobacillus stearothermophilus/enzimología , Calor , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
4.
Pak J Biol Sci ; 23(4): 561-566, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32363842

RESUMEN

BACKGROUND AND OBJECTIVE: The DPEase enzyme from Agrobacterium tumefaciens is more efficient and has a high activity in D-fructose. The dpe gene has been successfully cloned to Escherichia coli BL21 (DE3) pET-21b dpe but the enzyme has not been purified and its character is unknown. The intent of this study was to purify and assign of DPEase enzyme by recombinant E. coli. MATERIALS AND METHODS: The enzyme was clarified by affinity chromatography and then characterized by following pH, temperature, co-factor parameters. Analysis of molecular weight proteins was done by SDS-PAGE. RESULTS: Through purification, the purified DPEase activity was increased 1,01 times than crude and with 84.2% of yield. The DPEase had an the maximum temperature is 40°C and pH was 8.5. The presence of Mg2+, Mo2+, Cu2+, Ca2+ and Zn2+ inhibited the activity of the enzyme while of Co2+, Mn2+, Fe2+, Ni2+ enhanced the activity. Estimation of molecular weight through SDS-PAGE revealed that weight of DPEase was 32 kDa. CONCLUSION: Purified DPease enzymes shows clear bands that demonstrate successful purification using affinity chromatography. It is expected that after pure enzymes are obtained the character of the enzymes working will be maximized.


Asunto(s)
Carbohidrato Epimerasas/farmacología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Fructosa/metabolismo , Carbohidrato Epimerasas/aislamiento & purificación , Cromatografía de Afinidad , Estabilidad de Enzimas , Proteínas de Escherichia coli/aislamiento & purificación , Concentración de Iones de Hidrógeno , Especificidad por Sustrato , Temperatura
5.
Biochim Biophys Acta Proteins Proteom ; 1866(11): 1084-1091, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30282606

RESUMEN

L-Arabinose isomerase isolated from Geobacillus stearothermophilus (GSAI) was modified to improve its substrate specificity for D-galactose for the production of D-tagatose, a potential reduced-energy sweetener. Among the selected residues, mutation at residue 18 produced a mutant strain, H18T, which exhibited increased activity for D-galactose compared with the wild-type (WT) enzyme. Analysis of the substrate specificity of H18T showed a 45.4% improvement for D-galactose. Replacing histidine with threonine at residue 18 resulted in approximately 2.7-fold and 1.8-fold higher substrate binding and catalytic efficiency, respectively, for D-galactose. Further enhancement of the specific activity and catalytic efficiency of H18T for D-galactose by up to 2.7-fold and 4.3-fold, respectively, was achieved by adding borate during L-arabinose isomerase catalysis. Moreover, H18T showed thermostability and no destabilization was detected, which is promising for the industrial production of D-tagatose.


Asunto(s)
Isomerasas Aldosa-Cetosa/metabolismo , Galactosa/metabolismo , Geobacillus stearothermophilus/enzimología , Catálisis , Clonación Molecular , Escherichia coli/genética , Hexosas/metabolismo , Histidina/metabolismo , Concentración de Iones de Hidrógeno , Microbiología Industrial , Estructura Molecular , Conformación Proteica , Especificidad por Sustrato , Temperatura , Treonina/metabolismo
6.
PLoS One ; 10(5): e0123981, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26010246

RESUMEN

We propose a novel method of detecting trace amounts of dengue virus (DENVs) from serum. Our method is based on the interaction between a sulfated sugar chain and a DENV surface glycoprotein. After capturing DENV with the sulfated sugar chain-immobilized gold nanoparticles (SGNPs), the resulting complex is precipitated and viral RNA content is measured using the reverse-transcription quantitative polymerase chain reaction SYBR Green I (RT-qPCR-Syb) method. Sugar chains that bind to DENVs were identified using the array-type sugar chain immobilized chip (Sugar Chip) and surface plasmon resonance (SPR) imaging. Heparin and low-molecular-weight dextran sulfate were identified as binding partners, and immobilized on gold nanoparticles to prepare 3 types of SGNPs. The capacity of these SGNPs to capture and concentrate trace amounts of DENVs was evaluated in vitro. The SGNP with greatest sensitivity was tested using clinical samples in Indonesia in 2013-2014. As a result, the novel method was able to detect low concentrations of DENVs using only 6 µL of serum, with similar sensitivity to that of a Qiagen RNA extraction kit using 140 µL of serum. In addition, this method allows for multiplex-like identification of serotypes of DENVs. This feature is important for good healthcare management of DENV infection in order to safely diagnose the dangerous, highly contagious disease quickly, with high sensitivity.


Asunto(s)
Carbohidratos/química , Virus del Dengue/aislamiento & purificación , Técnicas y Procedimientos Diagnósticos , Sulfatos/metabolismo , Virión/metabolismo , Animales , Chlorocebus aethiops , Virus del Dengue/genética , Genotipo , Oro/química , Humanos , Nanopartículas del Metal/química , Sensibilidad y Especificidad , Suero , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...