Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 15(14): 6521-6535, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36938953

RESUMEN

The photocatalytic water splitting process to produce H2 is an attractive approach to meet energy demands while achieving carbon emission reduction targets. However, none of the current photocatalytic devices meets the criteria for practical sustainable H2 production due to their insufficient efficiency and the resulting high H2 cost. Economic viability may be achieved by simultaneously producing more valuable products than O2 or integrating with reforming processes of real waste streams, such as plastic and food waste. Research over the past decade has begun to investigate the possibility of replacing water oxidation with more kinetically and thermodynamically facile oxidation reactions. We summarize how various alternative photo-oxidation reactions can be combined with proton reduction in photocatalysis to achieve chemical valorization with concurrent H2 production. By examining the current advantages and challenges of these oxidation reactions, we intend to demonstrate that these technologies would contribute to providing H2 energy, while also producing high-value chemicals for a sustainable chemical industry and eliminating waste.

2.
Mod Rheumatol Case Rep ; 7(2): 416-421, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-36715286

RESUMEN

We report a case of anti-transcriptional intermediary factor 1γ antibody-positive dermatomyositis following nivolumab treatment. The patient was successfully treated with pulse steroid therapy and high-dose intravenous immunoglobulin, followed by oral glucocorticoid treatment. Immune checkpoint inhibitors, such as nivolumab, may induce not only myositis as an immune-related adverse event but also dermatomyositides as a paraneoplastic syndrome by distracting immune tolerance. Differentiating between pathologies is warranted if patients develop myositis after immune checkpoint inhibitor administration.


Asunto(s)
Dermatomiositis , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Miositis , Humanos , Nivolumab/efectos adversos , Dermatomiositis/complicaciones , Dermatomiositis/diagnóstico , Dermatomiositis/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/inducido químicamente , Carcinoma de Células Escamosas de Esófago/complicaciones , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Miositis/complicaciones , Neoplasias Esofágicas/complicaciones , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/tratamiento farmacológico
3.
NPJ Digit Med ; 5(1): 43, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35414651

RESUMEN

Alzheimer's disease is a neurodegenerative disease that imposes a substantial financial burden on society. A number of machine learning studies have been conducted to predict the speed of its progression, which varies widely among different individuals, for recruiting fast progressors in future clinical trials. However, because the data in this field are very limited, two problems have yet to be solved: the first is that models built on limited data tend to induce overfitting and have low generalizability, and the second is that no cross-cohort evaluations have been done. Here, to suppress the overfitting caused by limited data, we propose a hybrid machine learning framework consisting of multiple convolutional neural networks that automatically extract image features from the point of view of brain segments, which are relevant to cognitive decline according to clinical findings, and a linear support vector classifier that uses extracted image features together with non-image information to make robust final predictions. The experimental results indicate that our model achieves superior performance (accuracy: 0.88, area under the curve [AUC]: 0.95) compared with other state-of-the-art methods. Moreover, our framework demonstrates high generalizability as a result of evaluations using a completely different cohort dataset (accuracy: 0.84, AUC: 0.91) collected from a different population than that used for training.

4.
Int Immunol ; 34(1): 21-33, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34648636

RESUMEN

Plasmodium parasites that infect humans are highly polymorphic, and induce various infections ranging from an asymptomatic state to life-threatening diseases. However, how the differences between the parasites affect host immune responses during blood-stage infection remains largely unknown. We investigated the CD4+ T-cell immune responses in mice infected with P. berghei ANKA (PbA) or P. chabaudi chabaudi AS (Pcc) using PbT-II cells, which recognize a common epitope of these parasites. In the acute phase of infection, CD4+ T-cell responses in PbA-infected mice showed a lower involvement of Th1 cells and a lower proportion of Ly6Clo effector CD4+ T cells than those in Pcc-infected mice. Transcriptome analysis of PbT-II cells indicated that type I interferon (IFN)-regulated genes were expressed at higher levels in both Th1- and Tfh-type PbT-II cells from PbA-infected mice than those from Pcc-infected mice. Moreover, IFN-α levels were considerably higher in PbA-infected mice than in Pcc-infected mice. Inhibition of type I IFN signaling increased PbT-II and partially reversed the Th1 over Tfh bias of the PbT-II cells in both PbA- and Pcc-infected mice. In the memory phase, PbT-II cells in PbA-primed mice maintained higher numbers and exhibited a better recall response to the antigen. However, recall responses were not significantly different between the infection groups after re-challenge with PbA, suggesting the effect of the inflammatory environment by the infection. These observations suggest that the differences in Plasmodium-specific CD4+ T-cell responses between PbA- and Pcc-infected mice were associated with the difference in type I IFN production during the early phase of the infection.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Interferón Tipo I/biosíntesis , Malaria/inmunología , Plasmodium berghei/inmunología , Plasmodium chabaudi/inmunología , Animales , Células Cultivadas , Ratones , Ratones Transgénicos
5.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34638731

RESUMEN

In recent years, brown adipose tissue (BAT), which has a high heat-producing capacity, has been confirmed to exist even in adults, and it has become a focal point for the prevention and the improvement of obesity and lifestyle-related diseases. However, the influences of obesity and physical activity (PA) on the fluid factors secreted from BAT (brown adipokines) are not well understood. In this study, therefore, we focused on brown adipokines and investigated the effects of obesity and PA. The abnormal expressions of gene fluid factors such as galectin-3 (Lgals3) and Lgals3 binding protein (Lgals3bp), whose proteins are secreted from HB2 brown adipocytes, were observed in the interscapular BAT of obese mice fed a high-fat diet for 4 months. PA attenuated the abnormalities in the expressions of these genes. Furthermore, although the gene expressions of factors related to brown adipocyte differentiation such as peroxisome proliferator-activated receptor gamma coactivator 1-α were also down-regulated in the BAT of the obese mice, PA suppressed the down-regulation of these factors. On the other hand, lipogenesis was increased more in HB2 cells overexpressing Lgals3 compared with that in control cells, and the overexpression of Lgals3bp decreased the mitochondrial mass. These results indicate that PA attenuates the obesity-induced dysregulated expression of brown adipokines and suggests that Lgals3 and Lgals3bp are involved in brown adipocyte differentiation.


Asunto(s)
Adipocitos Marrones/metabolismo , Adipoquinas/biosíntesis , Tejido Adiposo Pardo/metabolismo , Galectina 3/biosíntesis , Regulación de la Expresión Génica , Obesidad/metabolismo , Condicionamiento Físico Animal , Animales , Diferenciación Celular , Ratones
6.
Int Immunol ; 33(8): 409-422, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-33914894

RESUMEN

Upon activation, specific CD4+ T cells up-regulate the expression of CD11a and CD49d, surrogate markers of pathogen-specific CD4+ T cells. However, using T-cell receptor transgenic mice specific for a Plasmodium antigen, termed PbT-II, we found that activated CD4+ T cells develop not only to CD11ahiCD49dhi cells, but also to CD11ahiCD49dlo cells during acute Plasmodium infection. CD49dhi PbT-II cells, localized in the red pulp of spleens, expressed transcription factor T-bet and produced IFN-γ, indicating that they were type 1 helper T (Th1)-type cells. In contrast, CD49dlo PbT-II cells resided in the white pulp/marginal zones and were a heterogeneous population, with approximately half of them expressing CXCR5 and a third expressing Bcl-6, a master regulator of follicular helper T (Tfh) cells. In adoptive transfer experiments, both CD49dhi and CD49dlo PbT-II cells differentiated into CD49dhi Th1-type cells after stimulation with antigen-pulsed dendritic cells, while CD49dhi and CD49dlo phenotypes were generally maintained in mice infected with Plasmodium chabaudi. These results suggest that CD49d is expressed on Th1-type Plasmodium-specific CD4+ T cells, which are localized in the red pulp of the spleen, and can be used as a marker of antigen-specific Th1 CD4+ T cells, rather than that of all pathogen-specific CD4+ T cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Integrina alfa4/inmunología , Malaria/inmunología , Plasmodium chabaudi/inmunología , Células T Auxiliares Foliculares/inmunología , Células TH1/inmunología , Traslado Adoptivo/métodos , Animales , Células Cultivadas , Células Dendríticas/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-bcl-6/inmunología , Bazo/inmunología , Linfocitos T Colaboradores-Inductores/inmunología
7.
J Clin Lab Anal ; 35(2): e23639, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33107085

RESUMEN

BACKGROUND: The intra-individual reference range is generally narrower than the commonly used reference range. Consequently, close monitoring of changes in the laboratory test results of individuals based on the inter-individual reference range remains challenging. METHODS: We examined the determination of individual reference ranges using four indicators of nutritional conditions: transferrin (TRF), albumin (ALB), retinol-binding protein (RBP), and transthyretin (TTR). The subjects comprised 20 healthy individuals and blood samples were collected and tested five times at 2-week intervals. We used the measurement results for the four indicators and examined individual reference ranges using four methods, including calculation methods based on the reference change value and Bayesian inference. RESULTS: The resulting intra-individual reference ranges were narrower than the currently used inter-individual reference range for all measurements using four methods. Furthermore, the intra-individual coefficient of variation [CV (intra)] was smaller than the inter-individual coefficient of variation [CV (inter)] for TRF, RBP, and TTR for all 20 subjects. The means CV (intra) for the four indicators were also lower than the corresponding CV (inter). CONCLUSIONS: The intra-individual reference range can be used to validate the standard deviation and coefficient of variation for currently used indicators. Moreover, Bayesian methods are speculated to be the most versatile.


Asunto(s)
Análisis Químico de la Sangre/métodos , Prealbúmina/análisis , Proteínas de Unión al Retinol/análisis , Albúmina Sérica Humana/análisis , Transferrina/análisis , Adulto , Teorema de Bayes , Variación Biológica Individual , Análisis Químico de la Sangre/normas , Análisis Químico de la Sangre/estadística & datos numéricos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estado Nutricional , Apoyo Nutricional , Valores de Referencia
8.
Int J Mol Sci ; 21(18)2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32967199

RESUMEN

Exercise training is well known to enhance adipocyte lipolysis in response to hormone challenge. However, the existence of a relationship between the timing of exercise training and its effect on adipocyte lipolysis is unknown. To clarify this issue, Wistar rats were run on a treadmill for 9 weeks in either the early part (E-EX) or late part of the active phase (L-EX). L-EX rats exhibited greater isoproterenol-stimulated lipolysis expressed as fold induction over basal lipolysis, with greater protein expression levels of hormone-sensitive lipase (HSL) phosphorylated at Ser 660 compared to E-EX rats. Furthermore, we discovered that Brain and muscle Arnt-like (BMAL)1 protein can associate directly with several protein kinase A (PKA) regulatory units (RIα, RIß, and RIIß) of protein kinase, its anchoring protein (AKAP)150, and HSL, and that the association of BMAL1 with the regulatory subunits of PKA, AKAP150, and HSL was greater in L-EX than in E-EX rats. In contrast, comparison between E-EX and their counterpart sedentary control rats showed a greater co-immunoprecipitation only between BMAL1 and ATGL. Thus, both E-EX and L-EX showed an enhanced lipolytic response to isoproterenol, but the mechanisms underlying exercise training-enhanced lipolytic response to isoproterenol were different in each group.


Asunto(s)
Isoproterenol/farmacología , Lipólisis/efectos de los fármacos , Condicionamiento Físico Animal , Esterol Esterasa/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Masculino , Fosforilación/efectos de los fármacos , Ratas , Ratas Wistar
9.
Artículo en Inglés | MEDLINE | ID: mdl-30108645

RESUMEN

We recently reported that ETAS 50, a standardized extract from the Asparagus officinalis stem, exerted anti-inflammatory effects on ultraviolet-B- (UV-B-) irradiated normal human dermal fibroblasts (NHDFs) by inhibiting nuclear factor-κB p65 nuclear import and the resulting interleukin-1ß (IL-1ß) expression. To further elucidate the antiphotoaging potency of ETAS 50, we examined the anti-inflammatory effects on UV-B-irradiated NHDFs by focusing on the stress-activated mitogen-activated protein kinase (MAPK) and Akt signaling pathways. NHDFs were treated with 1 mg/mL of ETAS 50 or dextrin (vehicle control) after UV-B irradiation (20 mJ/cm2) for different time periods. Phosphorylation levels of c-Jun N-terminal kinase (JNK), p38 MAPK, and Akt were analyzed by western blotting. IL-6 mRNA levels were analyzed by real-time polymerase chain reaction. UV-B-irradiated NHDFs showed increased phosphorylation levels of JNK, p38 MAPK, and Akt, as well as increased mRNA levels of IL-6. ETAS 50 treatment after UV-B irradiation suppressed the increased phosphorylation levels of Akt without affecting those of JNK and p38 MAPK. ETAS 50 as well as Akt inhibitor Perifosine repressed UV-B irradiation-induced IL-6 mRNA expression. These results suggest that ETAS 50 treatment represses UV-B irradiation-induced IL-6 expression by suppressing Akt phosphorylation. The present findings demonstrate the potential of ETAS 50 to prevent photoaging by attenuating UV-B irradiation-induced proinflammatory responses in skin fibroblasts.

10.
Environ Health Prev Med ; 23(1): 40, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30131067

RESUMEN

BACKGROUND: Heat shock protein 70 (HSP70) exhibits protective effects against ultraviolet (UV)-induced premature skin aging. A standardized extract of Asparagus officinalis stem (EAS) is produced as a novel and unique functional food that induces HSP70 cellular expression. To elucidate the anti-photoaging potencies of EAS, we examined its effects on HSP70 expression levels in UV-B-irradiated normal human dermal fibroblasts (NHDFs). METHODS: NHDFs were treated with 1 mg/mL of EAS or dextrin (vehicle control) prior to UV-B irradiation (20 mJ/cm2). After culturing NHDFs for different time periods, HSP70 mRNA and protein levels were analyzed using real-time polymerase chain reaction and western blotting, respectively. RESULTS: UV-B-irradiated NHDFs showed reduced HSP70 mRNA levels after 1-6 h of culture, which were recovered after 24 h of culture. Treatment with EAS alone for 24 h increased HSP70 mRNA levels in the NHDFs, but the increase was not reflected in its protein levels. On the other hand, pretreatment with EAS abolished the UV-B irradiation-induced reduction in HSP70 expression at both mRNA and protein levels. These results suggest that EAS is capable to preserve HSP70 quantity in UV-B-irradiated NHDFs. CONCLUSIONS: EAS exhibits anti-photoaging potencies by preventing the reduction in HSP70 expression in UV-irradiated dermal fibroblasts.


Asunto(s)
Asparagus , Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Proteínas HSP70 de Choque Térmico/biosíntesis , Extractos Vegetales/farmacología , Rayos Ultravioleta/efectos adversos , Células Cultivadas , Femenino , Humanos , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Piel/efectos de los fármacos , Piel/efectos de la radiación , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de la radiación , Telómero/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-29967648

RESUMEN

Ultraviolet (UV) irradiation induces proinflammatory responses in skin cells, including dermal fibroblasts, accelerating premature skin aging (photoaging). ETAS 50, a standardized extract from the Asparagus officinalis stem, is a novel and unique functional food that suppresses proinflammatory responses of hydrogen peroxide-stimulated skin fibroblasts and interleukin- (IL-) 1ß-stimulated hepatocytes. To elucidate its antiphotoaging potencies, we examined whether ETAS 50 treatment after UV-B irradiation attenuates proinflammatory responses of normal human dermal fibroblasts (NHDFs). UV-B-irradiated NHDFs showed reduced levels of the cytosolic inhibitor of nuclear factor-κB α (IκBα) protein and increased levels of nuclear p65 protein. The nuclear factor-κB nuclear translocation inhibitor JSH-23 abolished UV-B irradiation-induced IL-1ß mRNA expression, indicating that p65 regulates transcriptional induction. ETAS 50 also markedly suppressed UV-B irradiation-induced increases in IL-1ß mRNA levels. Immunofluorescence analysis revealed that ETAS 50 retained p65 in the cytosol after UV-B irradiation. Western blotting also showed that ETAS 50 suppressed the UV-B irradiation-induced increases in nuclear p65 protein. Moreover, ETAS 50 clearly suppressed UV-B irradiation-induced distribution of importin-α protein levels in the nucleus without recovering cytosolic IκBα protein levels. These results suggest that ETAS 50 exerts anti-inflammatory effects on UV-B-irradiated NHDFs by suppressing the nuclear import machinery of p65. Therefore, ETAS 50 may prevent photoaging by suppressing UV irradiation-induced proinflammatory responses of dermal fibroblasts.

12.
Oxid Med Cell Longev ; 2017: 9410954, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28168013

RESUMEN

Obesity-induced inflammatory changes in white adipose tissue (WAT), which caused dysregulated expression of inflammation-related adipokines involving tumor necrosis factor-α and monocyte chemoattractant protein-1, contribute to the development of insulin resistance. Moreover, current literature reports state that WAT generates reactive oxygen species (ROS), and the enhanced production of ROS in obese WAT has been closely associated with the dysregulated expression of adipokines in WAT. Therefore, the reduction in excess WAT and oxidative stress that results from obesity is thought to be one of the important strategies in preventing and improving lifestyle-related diseases. Exercise training (TR) not only brings about a decrease in WAT mass but also attenuates obesity-induced dysregulated expression of the adipokines in WAT. Furthermore, some reports indicate that TR affects the generation of oxidative stress in WAT. This review outlines the impact of TR on the expression of inflammation-related adipokines and oxidative stress in WAT.


Asunto(s)
Adipoquinas/metabolismo , Tejido Adiposo Blanco/metabolismo , Ejercicio Físico/fisiología , Humanos , Inflamación/metabolismo , Estrés Oxidativo
13.
J Biochem ; 162(2): 137-143, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28130415

RESUMEN

A sialidase NEU1 that removes sialic acids from glycoconjugates has been implicated in diverse cellular functions. Aberrant NEU1 activity is associated with various pathologies including lysosomal storage disorder sialidosis, autoimmune diseases and the malignancy and metastasis of cancer cells. We recently reported that NEU1 activity increases during 3T3-L1 adipogenesis and that it is higher in the epididymal fat of obese and diabetic mice. However, the precise functions of NEU1 in adipocytes have not been elucidated. Knockdown of NEU1 using siRNA transfection in 3T3-L1 adipocytes significantly decreased the mRNA expression and protein secretion of IL-6 and MCP-1 induced by LPS. The promoter activities of both IL-6 and MCP-1 as well as nuclear factor-kappa B (NF-κB) nuclear translocation were reduced in adipocytes transfected with an siRNA sequence that targets NEU1(siNEU1). NEU1 suppression using siNEU1 affected TLR4 sialylation. These findings suggest that NEU1 is involved in the production of IL-6 and MCP-1 in adipocytes possibly through TLR4/NF-κB signalling.


Asunto(s)
Adipocitos/metabolismo , FN-kappa B/metabolismo , Neuraminidasa/metabolismo , Células 3T3-L1 , Animales , Células Cultivadas , Quimiocina CCL2/antagonistas & inhibidores , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Perfilación de la Expresión Génica , Interleucina-6/antagonistas & inhibidores , Interleucina-6/genética , Interleucina-6/metabolismo , Ratones , Neuraminidasa/deficiencia , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/metabolismo
14.
Mediators Inflamm ; 2017: 9290416, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28133422

RESUMEN

Moderate-intensity regular exercise improves proinflammatory responses of lipopolysaccharide- (LPS-) stimulated macrophages. However, intracellular events that mediate the beneficial effects of exercise were unclear. This study aimed to clarify the mechanism by which regular voluntary exercise (VE) improves proinflammatory cytokine production by macrophages challenged with LPS. Peritoneal macrophages from VE mice secreted considerably higher amounts of interleukin- (IL-) 1ß and IL-18 than did cells from sedentary control (SC) mice in the presence and absence of LPS, although tumor necrosis factor-α and IL-10 secretion were comparable between both groups. The mRNA levels of these cytokines increased significantly in response to LPS; similar levels were noted in macrophages from both SC and VE mice. Moreover, LPS evoked similar levels of degradation of inhibitor of κB (IκB) α and phosphorylation of IκB kinase ß, c-Jun N-terminal kinase, and p38 in macrophages from SC and VE mice. These results indicate that the increased IL-1ß and IL-18 secretion in VE mice are regulated posttranscriptionally. On the other hand, macrophages from VE mice showed higher amounts of caspase-1 protein than did cells from SC mice. These results suggest that regular VE potentiates IL-1ß and IL-18 secretion in LPS-challenged macrophages by increasing caspase-1 levels.


Asunto(s)
Caspasa 1/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Animales , Células Cultivadas , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Condicionamiento Físico Animal , Serpinas/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Virales/farmacología
15.
Nat Prod Commun ; 11(5): 677-80, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27319149

RESUMEN

Enzyme-treated asparagus extract (ETAS) exerts a wide variety of beneficial biological actions including facilitating anti-cortisol stress and neurological anti-aging responses. However, the anti-skin aging effects of ETAS remain to be elucidated. Reactive oxygen species (ROS) play pivotal roles in skin aging. Increased ROS levels in fibroblasts in response to ultraviolet irradiation activate c-Jun N-terminal kinase (JNK) and its downstream transcription factor activator protein-1 (AP-1), and the resultant gene expression of matrix metalloproteinase (MMP) isoforms accelerates collagen breakdown in the dermis. Therefore, we explored whether ETAS has anti-skin aging effects by attenuating the oxidative stress responses in fibroblasts. Simultaneous treatment of murine skin L929 fibroblasts with hydrogen peroxide (H2O2) and either ETAS or dextrin showed that ETAS significantly suppressed H2O2-induced expression of MMP-9 mRNA as measured by real-time polymerase chain reaction. ETAS also clearly suppressed H2O2-stimulated phosphorylation of c-Jun (AP-1 subunit) and JNK as determined by Western blot. However, ETAS did not affect the increased amounts of carbonyl proteins in response to H2O2, also as determined by Western blotting. These results suggest that ETAS diminishes cellular responsiveness to ROS but does not scavenge ROS. Thus, ETAS has the potential to prevent skin aging through attenuating the oxidative stress responses in dermal fibroblasts.


Asunto(s)
Asparagus , Fibroblastos/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Extractos Vegetales/farmacología , Envejecimiento de la Piel/efectos de los fármacos , Animales , Línea Celular , Fibroblastos/metabolismo , Peróxido de Hidrógeno , Ratones , Fitoterapia
16.
Nat Prod Commun ; 11(12): 1883-1888, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30508357

RESUMEN

We recently reported that enzyme-treated asparagus extract (ETAS) attenuates hydrogen peroxide (H(2)0(2))-stimulated matrix metalloproteinase-9 expression in skin fibroblast L929 cells. To further elucidate the anti-aging effects of ETAS on skin, we examined whether ETAS has preventive effects on H202-induced pro-inflammatory responses of skin fibroblasts. H(2)0(2) induced Ser536 phosphorylation and nuclear accumulation of nuclear factor-κB (NF-κB) p65, and increased the mRNA levels .of interleukin-12α (IL-12α)-and inducible nitric oxide synthase (iNOS) in L929 cells. Pretreatment of the cells with JSH-23, an inhibitor of NF-κB nuclear translocation, abolished the H(2)(0(2)-induced expression of IL-12α and iNOS, indicating that the increased transcription is regulated by p65. The H(2)0(2)-stimulated nuclear accumulation of p65 and-induction of IL12a and iNOS mRNA were significantly attenuated after pretreatment with ETAS for 3 h, and these responses were completely abolished when the duration was extended to 24 h. However, ETAS did not affect the H(2)0(2)-stimulated degradation of IκBα and phosphorylation of p65. On the other hand, ETAS treatment for 24 h resulted in decreased protein levels of importin-α. These results suggest that ETAS prevents pro-inflammatory responses by suppressing the p65 nuclear translocation in skin fibroblasts induced by H202.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Asparagus/química , Fibroblastos/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales , Línea Celular , Fibroblastos/metabolismo , Peróxido de Hidrógeno/toxicidad , Ratones , Piel/citología , Sacarasa/química , Factor de Transcripción ReIA/antagonistas & inhibidores
17.
J Pineal Res ; 59(2): 267-75, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26123001

RESUMEN

Melatonin is synthesized in the pineal gland, but elicits a wide range of physiological responses in peripheral target tissues. Recent advances suggest that melatonin controls adiposity, resulting in changes in body weight. The aim of this study was to investigate the effect of melatonin on adipogenesis and mitochondrial biogenesis in 3T3-L1 mouse embryo fibroblasts. Melatonin significantly increased the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), a master regulator of adipogenesis, and promoted differentiation into adipocytes. Melatonin-treated cells also formed smaller lipid droplets and abundantly expressed several molecules associated with lipolysis, including adipose triglyceride lipase, perilipin, and comparative gene identification-58. Moreover, the hormone promoted biogenesis of mitochondria, as indicated by fluorescent staining, elevated the citrate synthase activity, and upregulated the expression of PPAR-γ coactivator 1 α, nuclear respiratory factor-1, and transcription factor A. The expression of uncoupling protein 1 was also observable both at mRNA and at protein level in melatonin-treated cells. Finally, adiponectin secretion and the expression of adiponectin receptors were enhanced. These results suggest that melatonin promotes adipogenesis, lipolysis, mitochondrial biogenesis, and adiponectin secretion. Thus, melatonin has potential as an anti-obesity agent that may reverse obesity-related disorders.


Asunto(s)
Adipogénesis/efectos de los fármacos , Melatonina/farmacología , Mitocondrias/metabolismo , Células 3T3-L1 , Adiponectina/metabolismo , Animales , Lipólisis/efectos de los fármacos , Ratones , PPAR gamma/metabolismo
18.
Biochem Biophys Res Commun ; 464(1): 348-53, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26141235

RESUMEN

It is widely accepted that lipolysis in adipocytes are regulated through the enzymatic activation of both hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) via their phosphorylation events. Accumulated evidence shows that habitual exercise training (HE) enhances the lipolytic response in primary white adipocytes with changes in the subcellular localization of lipolytic molecules. However, no study has focused on the effect that HE exerts on the phosphorylation of both HSL and ATGL in primary white adipocytes. It has been shown that the translocation of HSL from the cytosol to lipid droplet surfaces requires its phosphorylation at Ser-563. In primary white adipocytes obtained from HE rats, the level of HSL and ATGL proteins was higher than that in primary white adipocytes obtained from sedentary control (SC) rats. In HE rats, the level of phosphorylated ATGL and HSL was also significantly elevated compared with that in SC rats. These differences were confirmed by Phos-tag SDS-PAGE, a technique used to measure the amount of total phosphorylated proteins. Our results suggest that HE can consistently increase the activity of both lipases, thereby enhancing the lipolysis in white fat cells. Thus, HE helps in the prevention and treatment of obesity-related diseases by enhancing the lipolytic capacity.


Asunto(s)
Adipocitos Blancos/enzimología , Lipasa/metabolismo , Obesidad/prevención & control , Condicionamiento Físico Animal , Esterol Esterasa/metabolismo , Adipocitos Blancos/citología , Animales , Activación Enzimática , Regulación de la Expresión Génica , Lipasa/genética , Gotas Lipídicas/metabolismo , Lipólisis/genética , Masculino , Fosforilación , Cultivo Primario de Células , Transporte de Proteínas , Ratas , Ratas Wistar , Esterol Esterasa/genética
19.
J Obes ; 2015: 473430, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26075089

RESUMEN

Physical exercise accelerates the mobilization of free fatty acids from white adipocytes to provide fuel for energy. This happens in several tissues and helps to regulate a whole-body state of metabolism. Under these conditions, the hydrolysis of triacylglycerol (TG) that is found in white adipocytes is known to be augmented via the activation of these lipolytic events, which is referred to as the "lipolytic cascade." Indeed, evidence has shown that the lipolytic responses in white adipocytes are upregulated by continuous exercise training (ET) through the adaptive changes in molecules that constitute the lipolytic cascade. During the past few decades, many lipolysis-related molecules have been identified. Of note, the discovery of a new lipase, known as adipose triglyceride lipase, has redefined the existing concepts of the hormone-sensitive lipase-dependent hydrolysis of TG in white adipocytes. This review outlines the alterations in the lipolytic molecules of white adipocytes that result from ET, which includes the molecular regulation of TG lipases through the lipolytic cascade.


Asunto(s)
Adaptación Fisiológica/genética , Adipocitos Blancos/metabolismo , Ejercicio Físico , Ácidos Grasos no Esterificados/metabolismo , Lipólisis/genética , Obesidad/prevención & control , Triglicéridos/metabolismo , Regulación de la Expresión Génica , Humanos , Obesidad/genética , Fosforilación
20.
Crit Rev Immunol ; 35(4): 261-75, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26757391

RESUMEN

Circadian rhythms have long been known to regulate numerous physiological processes that vary across the diurnal cycle. The circadian clock system also controls various parameters of the immune system and its biological defense functions, allowing an organism to anticipate daily changes in activity and feeding and the associated risk of infection. Inflammation is an immune response triggered in living organisms in response to external stimuli. The risk of sepsis, an excessive inflammatory response, has been shown to have a diurnal variation. On the other hand, inflammatory responses are emerging to be induced by endogenous factors. Recent studies have suggested that chronic inflammation causes chronic diseases including rheumatoid arthritis, allergies, and aging-related diseases and that proteins encoded by clock genes affect the development of such chronic inflammatory diseases or increase the severity of their symptoms. Therefore, detailed understanding of circadian rhythm effects on inflammatory responses is expected to lead to new strategies for prevention or treatment of inflammatory diseases.


Asunto(s)
Enfermedades Autoinmunes/fisiopatología , Ritmo Circadiano/inmunología , Hipersensibilidad/fisiopatología , Sistema Inmunológico , Inflamación/inmunología , Animales , Humanos , Inmunidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...