Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pflugers Arch ; 472(5): 609-624, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32372285

RESUMEN

Nax is a brain [Na+] sensor expressed in the subfornical organ (SFO) and organum vasculosum of the lamina terminalis (OVLT) in the brain. We previously demonstrated that Nax signals are involved in the control of water intake behavior through the Nax/TRPV4 pathway. Nax gene knockout mice showed significantly attenuated water intake after an intracerebroventricular (ICV) injection of a hypertonic NaCl solution; however, the induction of a certain amount of water intake still remained, suggesting that another unknown [Na+]-dependent pathway besides the Nax/TRPV4 pathway contributes to water intake. In the present study, we screened for novel [Na+] sensors involved in water intake control and identified SLC9A4 (also called sodium (Na+)/hydrogen (H+) exchanger 4 (NHE4)). SLC9A4 is expressed in angiotensin II (Ang II) receptor type 1a (AT1a)-positive neurons in the OVLT. Sodium-imaging experiments using cultured cells transfected with slc9a4 revealed that SLC9A4 was activated by increases in extracellular [Na+] ([Na+]o), but not osmolality. Moreover, the firing activity of SLC9A4-positive neurons was enhanced by increases in [Na+]o and Ang II. slc9a4 knockdown in the OVLT reduced water intake induced by increases in [Na+], but not osmolality, in the cerebrospinal fluid. ICV injection experiments of a specific inhibitor suggested that the increase in extracellular [H+] caused by SLC9A4 activation next stimulates acid-sensing channel 1a (AS1C1a) to induce water intake. Our results thus indicate that SLC9A4 in the OVLT functions as a [Na+] sensor for the control of water intake and that the SLC9A4 signal is independent of the Nax/TRPV4 pathway.


Asunto(s)
Ingestión de Líquidos , Organum Vasculosum/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sodio/metabolismo , Potenciales de Acción , Animales , Línea Celular Tumoral , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/fisiología , Organum Vasculosum/citología , Organum Vasculosum/fisiología , Intercambiadores de Sodio-Hidrógeno/genética
2.
Neurosci Res ; 154: 45-51, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31150667

RESUMEN

Nax is a [Na+] sensor expressed in specific glial cells in the sensory circumventricular organs (sCVOs) in the brain. We recently demonstrated that Nax signals are involved in the control of not only salt intake but also water intake behavior. Our pharmacological experiments suggested that Nax signals led to activation of neurons bearing TRPV4 by using epoxyeicosatrienoic acids (EETs) as gliotransmitters to stimulate water intake. In the present study, we performed selective lesions of individual sCVOs in wild-type (WT) mice and the site-directed rescue of Nax expression in Nax-gene knockout (Nax-KO) mice. These experiments revealed that the Nax channel in the organum vasculosum laminae terminalis (OVLT) functions as a [Na+] sensor for the control of water intake behavior. Direct measurements of 5,6-EET and 8,9-EET in the OVLT demonstrated that EET levels were indeed increased two-fold by water deprivation for two days in WT, but not Nax-KO mice, indicating that EETs were Nax-dependently produced in the OVLT in response to increases in [Na+] in body fluids. More importantly, intracerebroventricular injection of 5,6-EET at the same level was effective to induce water intake. Double staining revealed that Nax-positive cells also expressed Cyp2c44, a cytochrome P450 epoxygenase, to generate EETs. Collectively, these results indicate that Nax-positive glial cells produce EETs to activate TRPV4-positive neurons which may stimulate water intake, in response to increases in [Na+] of body fluids.


Asunto(s)
Líquidos Corporales/fisiología , Sistema Enzimático del Citocromo P-450/metabolismo , Ingestión de Líquidos/fisiología , Neuroglía/metabolismo , Organum Vasculosum/metabolismo , Sodio/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Citocromo P-450 CYP2J2 , Familia 2 del Citocromo P450/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Canales Catiónicos TRPV/metabolismo
3.
PLoS Biol ; 17(9): e3000174, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31513577

RESUMEN

Congenital nystagmus, involuntary oscillating small eye movements, is commonly thought to originate from aberrant interactions between brainstem nuclei and foveal cortical pathways. Here, we investigated whether nystagmus associated with congenital stationary night blindness (CSNB) results from primary deficits in the retina. We found that CSNB patients as well as an animal model (nob mice), both of which lacked functional nyctalopin protein (NYX, nyx) in ON bipolar cells (BCs) at their synapse with photoreceptors, showed oscillating eye movements at a frequency of 4-7 Hz. nob ON direction-selective ganglion cells (DSGCs), which detect global motion and project to the accessory optic system (AOS), oscillated with the same frequency as their eyes. In the dark, individual ganglion cells (GCs) oscillated asynchronously, but their oscillations became synchronized by light stimulation. Likewise, both patient and nob mice oscillating eye movements were only present in the light when contrast was present. Retinal pharmacological and genetic manipulations that blocked nob GC oscillations also eliminated their oscillating eye movements, and retinal pharmacological manipulations that reduced the oscillation frequency of nob GCs also reduced the oscillation frequency of their eye movements. We conclude that, in nob mice, synchronized oscillations of retinal GCs, most likely the ON-DCGCs, cause nystagmus with properties similar to those associated with CSNB in humans. These results show that the nob mouse is the first animal model for a form of congenital nystagmus, paving the way for development of therapeutic strategies.


Asunto(s)
Enfermedades Hereditarias del Ojo/fisiopatología , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Miopía/fisiopatología , Ceguera Nocturna/fisiopatología , Nistagmo Congénito/etiología , Células Ganglionares de la Retina/fisiología , Animales , Preescolar , Modelos Animales de Enfermedad , Femenino , Humanos , Lactante , Masculino , Ratones Noqueados
4.
Neuron ; 101(1): 60-75.e6, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30503172

RESUMEN

Increases in sodium concentrations ([Na+]) in body fluids elevate blood pressure (BP) by enhancing sympathetic nerve activity (SNA). However, the mechanisms by which information on increased [Na+] is translated to SNA have not yet been elucidated. We herein reveal that sympathetic activation leading to BP increases is not induced by mandatory high salt intakes or the intraperitoneal/intracerebroventricular infusions of hypertonic NaCl solutions in Nax-knockout mice in contrast to wild-type mice. We identify Nax channels expressed in specific glial cells in the organum vasculosum lamina terminalis (OVLT) as the sensors detecting increases in [Na+] in body fluids and show that OVLT neurons projecting to the paraventricular nucleus (PVN) are activated via acid-sensing ion channel 1a (ASIC1a) by H+ ions exported from Nax-positive glial cells. The present results provide an insight into the neurogenic mechanisms responsible for salt-induced BP elevations.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Líquidos Corporales/metabolismo , Hipertensión/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Sodio/metabolismo , Canales de Sodio Activados por Voltaje/deficiencia , Animales , Presión Sanguínea/fisiología , Líquidos Corporales/química , Hipertensión/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Optogenética/métodos , Técnicas de Cultivo de Órganos , Organum Vasculosum/metabolismo , Organum Vasculosum/patología , Núcleo Hipotalámico Paraventricular/patología , Protones , Distribución Aleatoria , Sistema Nervioso Simpático/química , Sistema Nervioso Simpático/metabolismo
5.
Am J Physiol Regul Integr Comp Physiol ; 311(2): R299-306, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27252474

RESUMEN

Water-intake behavior is under the control of brain systems that sense body fluid conditions at sensory circumventricular organs (sCVOs); however, the underlying mechanisms have not yet been elucidated in detail. Nax is a sodium (Na(+)) level sensor in the brain, and the transient receptor potential vanilloid (TRPV) channels TRPV1 and TRPV4 have been proposed to function as osmosensors. We herein investigated voluntary water intake immediately induced after an intracerebroventricular administration of a hypertonic NaCl solution in TRPV1-, TRPV4-, Nax-, and their double-gene knockout (KO) mice. The induction of water intake by TRPV1-KO mice was normal, whereas intake by TRPV4-KO and Nax-KO mice was significantly less than that by WT mice. Water intake by Nax/TRPV4-double KO mice was similar to that by the respective single KO mice. When TRPV4 activity was blocked with a specific antagonist HC-067047, water intake by WT mice was significantly reduced, whereas intake by TRPV4-KO and Nax-KO mice was not. Similar results were obtained with the administration of miconazole, which inhibits the biosynthesis of epoxyeicosatrienoic acids (EETs), endogenous agonists for TRPV4, from arachidonic acid (AA). Intracerebroventricular injection of hypertonic NaCl with AA or 5,6-EET restored water intake by Nax-KO mice to the wild-type level but not that by TRPV4-KO mice. These results suggest that the Na(+) signal generated in Nax-positive glial cells leads to the activation of TRPV4-positive neurons in sCVOs to stimulate water intake by using EETs as gliotransmitters. Intracerebroventricular injection of equiosmolar hypertonic sorbitol solution induced small but significant water intake equally in all the genotypes, suggesting the presence of an unknown osmosensor in the brain.


Asunto(s)
Líquido Cefalorraquídeo/metabolismo , Ingestión de Líquidos/genética , Ácidos Hidroxieicosatetraenoicos/metabolismo , Transducción de Señal , Sodio/metabolismo , Canales Catiónicos TRPV , Canales de Sodio Activados por Voltaje/fisiología , Animales , Regulación del Apetito/fisiología , Encéfalo/fisiología , Activación del Canal Iónico/fisiología , Masculino , Ratones , Ratones Noqueados , Transducción de Señal/fisiología , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
6.
Neuron ; 86(4): 971-984, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25959730

RESUMEN

Accurate motion detection requires neural circuitry that compensates for global visual field motion. Select subtypes of retinal ganglion cells perceive image motion and connect to the accessory optic system (AOS) in the brain, which generates compensatory eye movements that stabilize images during slow visual field motion. Here, we show that the murine transmembrane semaphorin 6A (Sema6A) is expressed in a subset of On direction-selective ganglion cells (On DSGCs) and is required for retinorecipient axonal targeting to the medial terminal nucleus (MTN) of the AOS. Plexin A2 and A4, two Sema6A binding partners, are expressed in MTN cells, attract Sema6A(+) On DSGC axons, and mediate MTN targeting of Sema6A(+) RGC projections. Furthermore, Sema6A/Plexin-A2/A4 signaling is required for the functional output of the AOS. These data reveal molecular mechanisms underlying the assembly of AOS circuits critical for moving image perception.


Asunto(s)
Encéfalo/metabolismo , Movimientos Oculares/fisiología , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Vías Visuales/metabolismo , Animales , Axones/metabolismo , Ratones , Ratones Noqueados
7.
J Neurosci ; 34(9): 3429-42, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24573299

RESUMEN

We previously identified SPARC-related protein-containing immunoglobulin domains 1 (SPIG1, also known as Follistatin-like protein 4) as one of the dorsal-retina-specific molecules expressed in the developing chick retina. We here demonstrated that the knockdown of SPIG1 in the retinal ganglion cells (RGCs) of developing chick embryos induced the robust ectopic branching of dorsal RGC axons and failed to form a tight terminal zone at the proper position on the tectum. The knockdown of SPIG1 in RGCs also led to enhanced axon branching in vitro. However, this was canceled by the addition of a neutralizing antibody against brain-derived neurotrophic factor (BDNF) to the culture medium. SPIG1 and BDNF were colocalized in vesicle-like structures in cells. SPIG1 bound with the proform of BDNF (proBDNF) but very weakly with mature BDNF in vitro. The expression and secretion of mature BDNF were significantly decreased when SPIG1 was exogenously expressed with BDNF in HEK293T or PC12 cells. The amount of mature BDNF proteins as well as the tyrosine phosphorylation level of the BDNF receptor, tropomyosin-related kinase B (TrkB), in the hippocampus were significantly higher in SPIG1-knockout mice than in wild-type mice. Here the spine density of CA1 pyramidal neurons was consistently increased. Together, these results suggest that SPIG1 negatively regulated BDNF maturation by binding to proBDNF, thereby suppressing axonal branching and spine formation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Células Ganglionares de la Retina/metabolismo , Aminoácidos/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Proteínas de Unión al Calcio/genética , Células Cultivadas , Embrión de Pollo , Proteínas de la Matriz Extracelular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Hipocampo/citología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Unión Proteica/genética , Ratas , Retina/citología , Retina/embriología , Retina/crecimiento & desarrollo , Células Ganglionares de la Retina/ultraestructura , Transducción de Señal/genética , Sinapsis/genética , Sinapsis/metabolismo , Sinapsis/ultraestructura
8.
Trends Neurosci ; 36(11): 661-73, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24016361

RESUMEN

Body-fluid homeostasis is essential to life, and the concentration of Na(+) ([Na(+)]) and osmolality in plasma and the cerebrospinal fluid (CSF) are continuously monitored in the brain. To maintain a physiological level of Na/osmolality in body fluids, the control of Na and water intake and excretion are of prime importance. Two independent sensing systems for [Na(+)] and osmolality in circumventricular organs (CVOs) have long been postulated to be involved in the monitoring of body-fluid conditions. In the past decade, several molecules were reported as promising candidates for these sensors - Nax for the [Na(+)] sensor and transient receptor potential (TRP) channels for the osmosensor. This review presents a summary of developments in these areas over recent years.


Asunto(s)
Líquidos Corporales/metabolismo , Encéfalo/metabolismo , Homeostasis/fisiología , Animales , Humanos , Presión Osmótica , Sodio/sangre , Sodio/líquido cefalorraquídeo , Canales de Sodio/metabolismo
9.
J Neurosci ; 29(37): 11628-40, 2009 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-19759310

RESUMEN

Growth cones at the tip of growing axons are key cellular structures that detect guidance cues and mediate axonal growth. An increasing number of studies have suggested that the dynamic regulation of microtubules in the growth cone plays an essential role in growth cone steering. The dynamic properties of microtubules are considered to be regulated by variegated cellular factors but, in particular, through microtubule-interacting proteins. Here, we examined the functional role of adenomatous polyposis coli-like molecule 2 (APC2) in the development of axonal projections by using the chick retinotectal topographic projection system. APC2 is preferentially expressed in the nervous system from early developmental stages through to adulthood. Immunohistochemical analysis revealed that APC2 is distributed along microtubules in growth cones as well as axon shafts of retinal axons. Overexpression of APC2 in cultured cells induced the stabilization of microtubules, whereas the knockdown of APC2 in chick retinas with specific short hairpin RNA reduced the stability of microtubules in retinal axons. APC2 knockdown retinal axons showed abnormal growth attributable to a reduced response to ephrin-A2 in vitro. Furthermore, they showed drastic alterations in retinotectal projections without making clear target zones in the tectum in vivo. These results suggest that APC2 plays a critical role in the development of the nervous system through the regulation of microtubule stability.


Asunto(s)
Axones/fisiología , Proteínas del Citoesqueleto/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Conos de Crecimiento/fisiología , Microtúbulos/metabolismo , Análisis de Varianza , Animales , Línea Celular , Movimiento Celular/fisiología , Embrión de Pollo , Proteínas del Citoesqueleto/deficiencia , Electroporación/métodos , Efrina-A2 , Proteínas Fluorescentes Verdes/genética , Humanos , Microtúbulos/genética , Neuronas/citología , Neuronas/fisiología , Retina/citología , Retina/embriología , Transfección/métodos , Tubulina (Proteína)/metabolismo , Vías Visuales/embriología , Vías Visuales/metabolismo
10.
Dev Biol ; 331(2): 300-10, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19450575

RESUMEN

Two winged-helix transcription factors, FoxG1 (previously called chick brain factor1, CBF1) and FoxD1 (chick brain factor2, CBF2), are expressed specifically in the nasal and temporal regions of the developing chick retina, respectively. We previously demonstrated that FoxG1 controls the expression of topographic molecules including FoxD1, and determines the regional specificity of the nasal retina. FoxD1 is known to prescribe temporal specificity, however, molecular mechanisms and downstream targets have not been elucidated. Here we addressed the genetic mechanisms for establishing temporal specificity in the developing retina using an in ovo electroporation technique. Fibroblast growth factor (Fgf) and Wnt first play pivotal roles in inducing the region-specific expression of FoxG1 and FoxD1 in the optic vesicle. Misexpression of FoxD1 represses the expression of FoxG1, GH6, SOHo1, and ephrin-A5, and induces that of EphA3 in the retina. GH6 and SOHo1 repress the expression of FoxD1. In contrast to the inhibitory effect of FoxG1 on bone morphogenic protein (BMP) signaling, FoxD1 does not alter the expression of BMP4 or BMP2. Studies with chimeric mutants of FoxD1 showed that FoxD1 acts as a transcription repressor in controlling its downstream targets in the retina. Taken together with previous findings, our data suggest that FoxG1 and FoxD1 are located at the top of the gene cascade for regional specification along the nasotemporal (anteroposterior) axis in the retina, and FoxD1 determines temporal specificity.


Asunto(s)
Retina/fisiología , Factores de Transcripción Winged-Helix/fisiología , Animales , Antígenos de Diferenciación/metabolismo , Embrión de Pollo , Mutación , Retina/embriología , Transducción de Señal , Factores de Transcripción Winged-Helix/genética
11.
PLoS One ; 4(1): e4320, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19177171

RESUMEN

The direction of image motion is coded by direction-selective (DS) ganglion cells in the retina. Particularly, the ON DS ganglion cells project their axons specifically to terminal nuclei of the accessory optic system (AOS) responsible for optokinetic reflex (OKR). We recently generated a knock-in mouse in which SPIG1 (SPARC-related protein containing immunoglobulin domains 1)-expressing cells are visualized with GFP, and found that retinal ganglion cells projecting to the medial terminal nucleus (MTN), the principal nucleus of the AOS, are comprised of SPIG1+ and SPIG1(-) ganglion cells distributed in distinct mosaic patterns in the retina. Here we examined light responses of these two subtypes of MTN-projecting cells by targeted electrophysiological recordings. SPIG1+ and SPIG1(-) ganglion cells respond preferentially to upward motion and downward motion, respectively, in the visual field. The direction selectivity of SPIG1+ ganglion cells develops normally in dark-reared mice. The MTN neurons are activated by optokinetic stimuli only of the vertical motion as shown by Fos expression analysis. Combination of genetic labeling and conventional retrograde labeling revealed that axons of SPIG1+ and SPIG1(-) ganglion cells project to the MTN via different pathways. The axon terminals of the two subtypes are organized into discrete clusters in the MTN. These results suggest that information about upward and downward image motion transmitted by distinct ON DS cells is separately processed in the MTN, if not independently. Our findings provide insights into the neural mechanisms of OKR, how information about the direction of image motion is deciphered by the AOS.


Asunto(s)
Percepción de Movimiento/fisiología , Células Ganglionares de la Retina/metabolismo , Vías Visuales/fisiología , Animales , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Mosaicismo , Retina/citología , Retina/fisiología , Células Ganglionares de la Retina/citología , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/fisiología , Vías Visuales/citología
12.
Dev Growth Differ ; 50(6): 453-7, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18445068

RESUMEN

Owing to its external position in the embryo, the chick eye has been used as a readily accessible model for studying the molecular mechanisms behind the patterning of the central nervous system. Although methods of genetic analysis have not been established as in the mouse, the chick is convenient for analyzing the functions of genes by in ovo electroporation of retroviral vectors. In this review, we describe the retroviral vector-mediated transfer of genes into the chick optic vesicle by in ovo electroporation. A rapid, efficient, and sustained expression of transgenes is achieved by this approach.


Asunto(s)
Electroporación/métodos , Técnicas de Transferencia de Gen , Vectores Genéticos , Retina/embriología , Retroviridae/genética , Animales , Embrión de Pollo , ADN/metabolismo , Electrodos , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Modelos Genéticos , Plásmidos/metabolismo , Transfección , Transgenes
13.
Brain Nerve ; 60(4): 425-35, 2008 Apr.
Artículo en Japonés | MEDLINE | ID: mdl-18421984

RESUMEN

Topographic maps are a fundamental feature of neural networks in the nervous system. Understanding the molecular mechanisms by which topographically ordered neuronal connections are established during development has long been a major challenge in developmental neurobiology. The retinotectal projection of lower vertebrates including birds has been used as a readily accessible model system. In this projection, the temporal (posterior) retina is connected to the rostral (anterior) part of the contralateral optic tectum, the nasal (anterior) retina to the caudal (posterior) tectum, and likewise the dorsal and ventral retina to the ventral (lateral) and dorsal (medial) tectum, respectively. Thus, images received by the retina are precisely projected onto the tectum in a reversed manner. For the formation of topographic maps, molecular gradients in origin and targets are essential. To search for topographic molecules in the embryonic retina, we performed a large-scale screening and successfully identified a variety of molecules with various asymmetrical expression patterns along both axes in the developing retina. Included were many novel molecules with unknown functions, together with known molecules. Through analyses of these molecules, we can now present gene cascades for the retinal patterning and for the establishment of topographic retinotectal projection. In addition, we identified protein tyrosine phosphatase receptor type O (Ptpro) as a specific PTP that regulates Eph receptors. We show that Ptpro controls the sensitivity of retinal axons to ephrins, and thereby plays crucial roles in the topographic projection.


Asunto(s)
Efrinas/fisiología , Receptores de la Familia Eph/fisiología , Retina/embriología , Colículos Superiores/embriología , Animales , Axones/fisiología , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Pollos , Efrina-B1 , Receptor EphA3 , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/fisiología , Retina/fisiología , Colículos Superiores/fisiología
14.
PLoS One ; 3(2): e1533, 2008 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-18253481

RESUMEN

Visual information is transmitted to the brain by roughly a dozen distinct types of retinal ganglion cells (RGCs) defined by a characteristic morphology, physiology, and central projections. However, our understanding about how these parallel pathways develop is still in its infancy, because few molecular markers corresponding to individual RGC types are available. Previously, we reported a secretory protein, SPIG1 (clone name; D/Bsp120I #1), preferentially expressed in the dorsal region in the developing chick retina. Here, we generated knock-in mice to visualize SPIG1-expressing cells with green fluorescent protein. We found that the mouse retina is subdivided into two distinct domains for SPIG1 expression and SPIG1 effectively marks a unique subtype of the retinal ganglion cells during the neonatal period. SPIG1-positive RGCs in the dorsotemporal domain project to the dorsal lateral geniculate nucleus (dLGN), superior colliculus, and accessory optic system (AOS). In contrast, in the remaining region, here named the pan-ventronasal domain, SPIG1-positive cells form a regular mosaic and project exclusively to the medial terminal nucleus (MTN) of the AOS that mediates the optokinetic nystagmus as early as P1. Their dendrites costratify with ON cholinergic amacrine strata in the inner plexiform layer as early as P3. These findings suggest that these SPIG1-positive cells are the ON direction selective ganglion cells (DSGCs). Moreover, the MTN-projecting cells in the pan-ventronasal domain are apparently composed of two distinct but interdependent regular mosaics depending on the presence or absence of SPIG1, indicating that they comprise two functionally distinct subtypes of the ON DSGCs. The formation of the regular mosaic appears to be commenced at the end of the prenatal stage and completed through the peak period of the cell death at P6. SPIG1 will thus serve as a useful molecular marker for future studies on the development and function of ON DSGCs.


Asunto(s)
Proteínas del Ojo/análisis , Retina/crecimiento & desarrollo , Células Ganglionares de la Retina/citología , Animales , Biomarcadores , Ratones , Células Ganglionares de la Retina/química , Vías Visuales
15.
J Neurosci ; 26(42): 10868-78, 2006 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-17050724

RESUMEN

It has been long believed that the anteroposterior (A-P) and dorsoventral (D-V) axes in the developing retina are determined independently and also that the retinotectal projection along the two axes is controlled independently. However, we recently demonstrated that misexpression of Ventroptin, a bone morphogenic protein (BMP) antagonist, in the developing chick retina alters the retinotectal projection not only along the D-V (or mediolateral) axis but also along the A-P axis. Moreover, the dorsal-high expression of BMP4 is relieved by the dorsotemporal-high expression of BMP2 at embryonic day 5 (E5) in the retina, during which Ventroptin continuously counteracts the two BMPs keeping on the countergradient expression pattern, respectively. Here, we show that the topographic molecules so far reported to have a gradient only along the D-V axis and ephrin-A2 so far only along the A-P axis are both controlled by the BMP signal, and that they are expressed in a gradient manner along the tilted axis from E6 on in the developing chick retina: the expression patterns of these oblique-gradient molecules are all changed, when BMP2 expression is manipulated in the developing retina. Furthermore, in both BMP2 knockdown embryos and ephrin-A2-misexpressed embryos, the retinotectal projection is altered along the two orthogonal axes. The expressional switching from BMP4 to BMP2 thus appears to play a key role in the retinal patterning and topographic retinotectal projection by tilting the D-V axis toward the posterior side during retinal development. Our results also indicate that BMP2 expression is essential for the maintenance of regional specificity along the revised D-V axis.


Asunto(s)
Proteínas Morfogenéticas Óseas/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Retina/fisiología , Colículos Superiores/fisiología , Factor de Crecimiento Transformador beta/fisiología , Vías Visuales/fisiología , Animales , Proteína Morfogenética Ósea 2 , Embrión de Pollo , Ratones , Retina/embriología , Colículos Superiores/embriología , Vías Visuales/embriología
16.
Nat Neurosci ; 9(6): 761-9, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16680165

RESUMEN

Eph receptors are activated by the autophosphorylation of tyrosine residues upon the binding of their ligands, the ephrins; however, the protein tyrosine phosphatases (PTPs) responsible for the negative regulation of Eph receptors have not been elucidated. Here, we identified protein tyrosine phosphatase receptor type O (Ptpro) as a specific PTP that efficiently dephosphorylates both EphA and EphB receptors as substrates. Biochemical analyses revealed that Ptpro dephosphorylates a phosphotyrosine residue conserved in the juxtamembrane region, which is required for the activation and signal transmission of Eph receptors. Ptpro thus seems to moderate the amount of maximal activation of Eph receptors. Using the chick retinotectal projection system, we show that Ptpro controls the sensitivity of retinal axons to ephrins and thereby has a crucial role in the establishment of topographic projections. Our findings explain the molecular mechanism that determines the threshold of the response of Eph receptors to ephrins in vivo.


Asunto(s)
Efrinas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Receptores de la Familia Eph/química , Receptores de la Familia Eph/metabolismo , Transducción de Señal/fisiología , Tirosina/metabolismo , Animales , Diferenciación Celular/fisiología , Membrana Celular/química , Membrana Celular/metabolismo , Embrión de Pollo , Regulación hacia Abajo/fisiología , Retroalimentación Fisiológica/fisiología , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Ratones , Células 3T3 NIH , Nervio Óptico/citología , Nervio Óptico/embriología , Nervio Óptico/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores , Retina/citología , Retina/embriología , Retina/metabolismo , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Colículos Superiores/citología , Colículos Superiores/embriología , Colículos Superiores/metabolismo , Vías Visuales/citología , Vías Visuales/embriología , Vías Visuales/metabolismo
17.
J Neurobiol ; 59(1): 34-47, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15007825

RESUMEN

To understand the molecular basis of topographic retinotectal projection, an overall view of the asymmetrically expressed molecules in the developing retina is needed. We performed a large-scale screening using restriction landmark cDNA scanning (RLCS) in the embryonic day 8 (E8) chick retina. RLCS is a cDNA display system, in which a large number of cDNA species are displayed as two-dimensional spots with intensities reflecting their expression levels as mRNA. We searched for spots that gave different signal intensities between the nasal and temporal retinas or between the dorsal and ventral retinas, and detected about 200 spots that were preferential on one side in the retina. The asymmetric expression of each gene was verified by Northern blotting and in situ hybridization. By subsequent analyses using molecular cloning, DNA sequencing, and database searching, 33 asymmetric molecules along the nasotemporal (N-T) axis and 20 along the dorsoventral (D-V) axis were identified. These included transcription factors, secretory factors, transmembrane proteins, and intracellular proteins with various putative functions. Their expression profiles revealed by in situ hybridization are highly diverse and individual. Moreover, many of them begin to be expressed in the retina from the early developmental stages, suggesting that they are implicated in the establishment and maintenance of regional specificity in the developing retina. The molecular repertoire revealed by this work will provide candidates for future studies to elucidate the molecular mechanisms of topographic retinotectal map formation.


Asunto(s)
Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Retina/fisiología , Animales , Autorradiografía , Embrión de Pollo , Clonación Molecular/métodos , Perfilación de la Expresión Génica/métodos , Hibridación in Situ/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Mapeo Restrictivo/métodos , Retina/embriología
18.
Development ; 130(21): 5203-15, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12954716

RESUMEN

Chick brain factor 1 (CBF1), a nasal retina-specific winged-helix transcription factor, is known to prescribe the nasal specificity that leads to the formation of the precise retinotectal map, especially along the anteroposterior (AP) axis. However, its downstream topographic genes and the molecular mechanisms by which CBF1 controls the expression of them have not been elucidated. We show that misexpression of CBF1 represses the expression of EphA3 and CBF2, and induces that of SOHo1, GH6, ephrin A2 and ephrin A5. CBF1 controls ephrin A5 by a DNA binding-dependent mechanism, ephrin A2 by a DNA binding-independent mechanism, and CBF2, SOHo1, GH6 and EphA3 by dual mechanisms. BMP2 expression begins double-gradiently in the retina from E5 in a complementary pattern to Ventroptin expression. Ventroptin antagonizes BMP2 as well as BMP4. CBF1 interferes in BMP2 signaling and thereby induces expression of ephrin A2. Our data suggest that CBF1 is located at the top of the gene cascade for the regional specification along the nasotemporal (NT) axis in the retina and distinct BMP signals play pivotal roles in the topographic projection along both axes.


Asunto(s)
Proteínas Aviares , Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Proteínas Oncogénicas , Proteínas Proto-Oncogénicas/metabolismo , Retina/embriología , Colículos Superiores/embriología , Proteínas Virales , Vías Aferentes , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Quimiotaxis/fisiología , Embrión de Pollo , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Efrina-A2/genética , Efrina-A2/metabolismo , Efrina-A3/genética , Efrina-A3/metabolismo , Efrina-A5/genética , Efrina-A5/metabolismo , Factores de Transcripción Forkhead , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Retina/citología , Retina/metabolismo , Transducción de Señal/fisiología , Colículos Superiores/citología , Colículos Superiores/metabolismo , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...