Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2483, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509065

RESUMEN

Missense variants are the most common type of coding genetic variants. Their functional assessment is fundamental for defining any implication in human diseases and may also uncover genes that are essential for human organ development. Here, we apply CRISPR-Cas9 gene editing on human iPSCs to study a heterozygous missense variant in GLI2 identified in two siblings with early-onset and insulin-dependent diabetes of unknown cause. GLI2 is a primary mediator of the Hedgehog pathway, which regulates pancreatic ß-cell development in mice. However, neither mutations in GLI2 nor Hedgehog dysregulation have been reported as cause or predisposition to diabetes. We establish and study a set of isogenic iPSC lines harbouring the missense variant for their ability to differentiate into pancreatic ß-like cells. Interestingly, iPSCs carrying the missense variant show altered GLI2 transcriptional activity and impaired differentiation of pancreatic progenitors into endocrine cells. RNASeq and network analyses unveil a crosstalk between Hedgehog and WNT pathways, with the dysregulation of non-canonical WNT signaling in pancreatic progenitors carrying the GLI2 missense variant. Collectively, our findings underscore an essential role for GLI2 in human endocrine development and identify a gene variant that may lead to diabetes.


Asunto(s)
Diabetes Mellitus , Islotes Pancreáticos , Humanos , Ratones , Animales , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteína Gli2 con Dedos de Zinc/genética , Mutación Missense/genética , Islotes Pancreáticos/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Nucleares/metabolismo
2.
Dev Cell ; 59(3): 326-338.e5, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38237591

RESUMEN

During organ formation, progenitor cells need to acquire different cell identities and organize themselves into distinct structural units. How these processes are coordinated and how tissue architecture(s) is preserved despite the dramatic cell rearrangements occurring in developing organs remain unclear. Here, we identified cellular rearrangements between acinar and ductal progenitors as a mechanism to drive branching morphogenesis in the pancreas while preserving the integrity of the acinar-ductal functional unit. Using ex vivo and in vivo mouse models, we found that pancreatic ductal cells form clefts by protruding and pulling on the acinar basement membrane, which leads to acini splitting. Newly formed acini remain connected to the bifurcated branches generated by ductal cell rearrangement. Insulin growth factor (IGF)/phosphatidylinositol 3-kinase (PI3K) pathway finely regulates this process by controlling pancreatic ductal tissue fluidity, with a simultaneous impact on branching and cell fate acquisition. Together, our results explain how acinar structure multiplication and branch bifurcation are synchronized during pancreas organogenesis.


Asunto(s)
Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas , Ratones , Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Páncreas , Células Acinares/metabolismo , Morfogénesis/fisiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo
3.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37373416

RESUMEN

The pancreas is a complex organ consisting of differentiated cells and extracellular matrix (ECM) organized adequately to enable its endocrine and exocrine functions. Although much is known about the intrinsic factors that control pancreas development, very few studies have focused on the microenvironment surrounding pancreatic cells. This environment is composed of various cells and ECM components, which play a critical role in maintaining tissue organization and homeostasis. In this study, we applied mass spectrometry to identify and quantify the ECM composition of the developing pancreas at the embryonic (E) day 14.5 and postnatal (P) day 1 stages. Our proteomic analysis identified 160 ECM proteins that displayed a dynamic expression profile with a shift in collagens and proteoglycans. Furthermore, we used atomic force microscopy to measure the biomechanical properties and found that the pancreatic ECM was soft (≤400 Pa) with no significant change during pancreas maturation. Lastly, we optimized a decellularization protocol for P1 pancreatic tissues, incorporating a preliminary crosslinking step, which effectively preserved the 3D organization of the ECM. The resulting ECM scaffold proved suitable for recellularization studies. Our findings provide insights into the composition and biomechanics of the pancreatic embryonic and perinatal ECM, offering a foundation for future studies investigating the dynamic interactions between the ECM and pancreatic cells.


Asunto(s)
Proteómica , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Proteómica/métodos , Matriz Extracelular/metabolismo , Páncreas/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Hormonas Pancreáticas/metabolismo , Andamios del Tejido/química
4.
Diabetes ; 71(7): 1525-1545, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35476777

RESUMEN

Impaired pancreatic ß-cell function and insulin secretion are hallmarks of type 2 diabetes. miRNAs are short, noncoding RNAs that silence gene expression vital for the development and function of ß cells. We have previously shown that ß cell-specific deletion of the important energy sensor AMP-activated protein kinase (AMPK) results in increased miR-125b-5p levels. Nevertheless, the function of this miRNA in ß cells is unclear. We hypothesized that miR-125b-5p expression is regulated by glucose and that this miRNA mediates some of the deleterious effects of hyperglycemia in ß cells. Here, we show that islet miR-125b-5p expression is upregulated by glucose in an AMPK-dependent manner and that short-term miR-125b-5p overexpression impairs glucose-stimulated insulin secretion (GSIS) in the mouse insulinoma MIN6 cells and in human islets. An unbiased, high-throughput screen in MIN6 cells identified multiple miR-125b-5p targets, including the transporter of lysosomal hydrolases M6pr and the mitochondrial fission regulator Mtfp1. Inactivation of miR-125b-5p in the human ß-cell line EndoCß-H1 shortened mitochondria and enhanced GSIS, whereas mice overexpressing miR-125b-5p selectively in ß cells (MIR125B-Tg) were hyperglycemic and glucose intolerant. MIR125B-Tg ß cells contained enlarged lysosomal structures and had reduced insulin content and secretion. Collectively, we identify miR-125b as a glucose-controlled regulator of organelle dynamics that modulates insulin secretion.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , MicroARNs , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Células Secretoras de Insulina/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo
5.
Development ; 149(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35037942

RESUMEN

Generating comprehensive image maps, while preserving spatial three-dimensional (3D) context, is essential in order to locate and assess quantitatively specific cellular features and cell-cell interactions during organ development. Despite recent advances in 3D imaging approaches, our current knowledge of the spatial organization of distinct cell types in the embryonic pancreatic tissue is still largely based on two-dimensional histological sections. Here, we present a light-sheet fluorescence microscopy approach to image the pancreas in three dimensions and map tissue interactions at key time points in the mouse embryo. We demonstrate the utility of the approach by providing volumetric data, 3D distribution of three main cellular components (epithelial, mesenchymal and endothelial cells) within the developing pancreas, and quantification of their relative cellular abundance within the tissue. Interestingly, our 3D images show that endocrine cells are constantly and increasingly in contact with endothelial cells forming small vessels, whereas the interactions with mesenchymal cells decrease over time. These findings suggest distinct cell-cell interaction requirements for early endocrine cell specification and late differentiation. Lastly, we combine our image data in an open-source online repository (referred to as the Pancreas Embryonic Cell Atlas).


Asunto(s)
Imagenología Tridimensional/métodos , Páncreas/anatomía & histología , Animales , Embrión de Mamíferos/anatomía & histología , Desarrollo Embrionario , Células Endoteliales/citología , Células Endoteliales/metabolismo , Epitelio/anatomía & histología , Proteína Homeótica Nkx-2.5/deficiencia , Proteína Homeótica Nkx-2.5/genética , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente
6.
Front Endocrinol (Lausanne) ; 12: 704824, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803905

RESUMEN

Pancreatic ß-cells within the islets of Langerhans respond to rising blood glucose levels by secreting insulin that stimulates glucose uptake by peripheral tissues to maintain whole body energy homeostasis. To different extents, failure of ß-cell function and/or ß-cell loss contribute to the development of Type 1 and Type 2 diabetes. Chronically elevated glycaemia and high circulating free fatty acids, as often seen in obese diabetics, accelerate ß-cell failure and the development of the disease. MiRNAs are essential for endocrine development and for mature pancreatic ß-cell function and are dysregulated in diabetes. In this review, we summarize the different molecular mechanisms that control miRNA expression and function, including transcription, stability, posttranscriptional modifications, and interaction with RNA binding proteins and other non-coding RNAs. We also discuss which of these mechanisms are responsible for the nutrient-mediated regulation of the activity of ß-cell miRNAs and identify some of the more important knowledge gaps in the field.


Asunto(s)
Diabetes Mellitus Tipo 2/patología , Células Secretoras de Insulina/patología , MicroARNs/genética , Nutrientes , Animales , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...