Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791526

RESUMEN

Antimicrobial resistance (AMR) is one of the most critical threats to global public health in the 21st century, causing a large number of deaths every year in both high-income and low- and middle-income countries. Vaccines and monoclonal antibodies can be exploited to prevent and treat diseases caused by AMR pathogens, thereby reducing antibiotic use and decreasing selective pressure that favors the emergence of resistant strains. Here, differences in the mechanism of action and resistance of vaccines and monoclonal antibodies compared to antibiotics are discussed. The state of the art for vaccine technologies and monoclonal antibodies are reviewed, with a particular focus on approaches validated in clinical studies. By underscoring the scope and limitations of the different emerging technologies, this review points out the complementary of vaccines and monoclonal antibodies in fighting AMR. Gaps in antigen discovery for some pathogens, as well as challenges associated with the clinical development of these therapies against AMR pathogens, are highlighted.


Asunto(s)
Antibacterianos , Anticuerpos Monoclonales , Humanos , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Animales , Farmacorresistencia Bacteriana/inmunología , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/uso terapéutico , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/tratamiento farmacológico
2.
Front Immunol ; 15: 1374293, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680489

RESUMEN

Introduction: Shigella is the etiologic agent of a bacillary dysentery known as shigellosis, which causes millions of infections and thousands of deaths worldwide each year due to Shigella's unique lifestyle within intestinal epithelial cells. Cell adhesion/invasion assays have been extensively used not only to identify targets mediating host-pathogen interaction, but also to evaluate the ability of Shigella-specific antibodies to reduce virulence. However, these assays are time-consuming and labor-intensive and fail to assess differences at the single-cell level. Objectives and methods: Here, we developed a simple, fast and high-content method named visual Adhesion/Invasion Inhibition Assay (vAIA) to measure the ability of anti-Shigellaantibodies to inhibit bacterial adhesion to and invasion of epithelial cells by using the confocal microscope Opera Phenix. Results: We showed that vAIA performed well with a pooled human serum from subjects challenged with S. sonnei and that a specific anti-IpaD monoclonal antibody effectively reduced bacterial virulence in a dose-dependent manner. Discussion: vAIA can therefore inform on the functionality of polyclonal and monoclonal responses thereby supporting the discovery of pathogenicity mechanisms and the development of candidate vaccines and immunotherapies. Lastly, this assay is very versatile and may be easily applied to other Shigella species or serotypes and to different pathogens.


Asunto(s)
Anticuerpos Antibacterianos , Adhesión Bacteriana , Disentería Bacilar , Humanos , Adhesión Bacteriana/inmunología , Disentería Bacilar/inmunología , Disentería Bacilar/microbiología , Disentería Bacilar/diagnóstico , Anticuerpos Antibacterianos/inmunología , Interacciones Huésped-Patógeno/inmunología , Shigella/inmunología , Shigella/patogenicidad , Células Epiteliales/microbiología , Células Epiteliales/inmunología , Shigella sonnei/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Células HeLa
3.
Cancers (Basel) ; 16(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38672554

RESUMEN

Proton beam therapy is considered a step forward with respect to electromagnetic radiation, thanks to the reduction in the dose delivered. Among unwanted effects to healthy tissue, cardiovascular complications are a known long-term radiotherapy complication. The transcriptional response of cardiac tissue from xenografted BALB/c nude mice obtained at 3 and 10 days after proton irradiation covering both the tumor region and the underlying healthy tissue was analyzed as a function of dose and time. Three doses were used: 2 Gy, 6 Gy, and 9 Gy. The intermediate dose had caused the greatest impact at 3 days after irradiation: at 2 Gy, 219 genes were differently expressed, many of them represented by zinc finger proteins; at 6 Gy, there were 1109, with a predominance of genes involved in energy metabolism and responses to stimuli; and at 9 Gy, there were 105, mainly represented by zinc finger proteins and molecules involved in the regulation of cardiac function. After 10 days, no significant effects were detected, suggesting that cellular repair mechanisms had defused the potential alterations in gene expression. The nonlinear dose-response curve indicates a need to update the models built on photons to improve accuracy in health risk prediction. Our data also suggest a possible role for zinc finger protein genes as markers of proton therapy efficacy.

4.
Front Bioinform ; 4: 1306244, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38501111

RESUMEN

Introduction: DNA methylation clocks presents advantageous characteristics with respect to the ambitious goal of identifying very early markers of disease, based on the concept that accelerated ageing is a reliable predictor in this sense. Methods: Such tools, being epigenomic based, are expected to be conditioned by sex and tissue specificities, and this work is about quantifying this dependency as well as that from the regression model and the size of the training set. Results: Our quantitative results indicate that elastic-net penalization is the best performing strategy, and better so when-unsurprisingly-the data set is bigger; sex does not appear to condition clocks performances and tissue specific clocks appear to perform better than generic blood clocks. Finally, when considering all trained clocks, we identified a subset of genes that, to the best of our knowledge, have not been presented yet and might deserve further investigation: CPT1A, MMP15, SHROOM3, SLIT3, and SYNGR. Conclusion: These factual starting points can be useful for the future medical translation of clocks and in particular in the debate between multi-tissue clocks, generally trained on a large majority of blood samples, and tissue-specific clocks.

5.
PLoS Comput Biol ; 20(2): e1011299, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38306404

RESUMEN

Onco-hematological studies are increasingly adopting statistical mixture models to support the advancement of the genomically-driven classification systems for blood cancer. Targeting enhanced patients stratification based on the sole role of molecular biology attracted much interest and contributes to bring personalized medicine closer to reality. In onco-hematology, Hierarchical Dirichlet Mixture Models (HDMM) have become one of the preferred method to cluster the genomics data, that include the presence or absence of gene mutations and cytogenetics anomalies, into components. This work unfolds the standard workflow used in onco-hematology to improve patient stratification and proposes alternative approaches to characterize the components and to assign patient to them, as they are crucial tasks usually supported by a priori clinical knowledge. We propose (a) to compute the parameters of the multinomial components of the HDMM or (b) to estimate the parameters of the HDMM components as if they were Multivariate Fisher's Non-Central Hypergeometric (MFNCH) distributions. Then, our approach to perform patients assignments to the HDMM components is designed to essentially determine for each patient its most likely component. We show on simulated data that the patients assignment using the MFNCH-based approach can be superior, if not comparable, to using the multinomial-based approach. Lastly, we illustrate on real Acute Myeloid Leukemia data how the utilization of MFNCH-based approach emerges as a good trade-off between the rigorous multinomial-based characterization of the HDMM components and the common refinement of them based on a priori clinical knowledge.


Asunto(s)
Hematología , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Genómica , Aberraciones Cromosómicas
6.
Sci Rep ; 14(1): 4807, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413727

RESUMEN

Antimicrobial resistance (AMR) is nowadays a global health concern as bacterial pathogens are increasingly developing resistance to antibiotics. Monoclonal antibodies (mAbs) represent a powerful tool for addressing AMR thanks to their high specificity for pathogenic bacteria which allows sparing the microbiota, kill bacteria through complement deposition, enhance phagocytosis or inhibit bacterial adhesion to epithelial cells. Here we describe a visual opsono-phagocytosis assay which relies on confocal microscopy to measure the impact of mAbs on phagocytosis of the bacterium Neisseria gonorrhoeae by macrophages. With respect to traditional CFU-based assays, generated images can be automatically analysed by convolutional neural networks. Our results demonstrate that confocal microscopy and deep learning-based analysis allow screening for phagocytosis-promoting mAbs against N. gonorrhoeae, even when mAbs are not purified and are expressed at low concentration. Ultimately, the flexibility of the staining protocol and of the deep-learning approach make the assay suitable for other bacterial species and cell lines where mAb activity needs to be investigated.


Asunto(s)
Aprendizaje Profundo , Gonorrea , Humanos , Neisseria gonorrhoeae , Anticuerpos Monoclonales , Ensayos Analíticos de Alto Rendimiento , Antibacterianos/farmacología , Fagocitosis
7.
Evol Med Public Health ; 11(1): 397-414, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954982

RESUMEN

Background and objectives: Epigenetic estimators based on DNA methylation levels have emerged as promising biomarkers of human aging. These estimators exhibit natural variations across human groups, but data about indigenous populations remain underrepresented in research. This study aims to investigate differences in epigenetic estimators between two distinct human populations, both residing in the Gran Chaco region of Argentina, the Native-American Wichí, and admixed Criollos who are descendants of intermarriages between Native Americans and the first European colonizers, using a population genetic approach. Methodology: We analyzed 24 Wichí (mean age: 39.2 ± 12.9 yo) and 24 Criollos (mean age: 41.1 ± 14.0 yo) for DNA methylation levels using the Infinium MethylationEPIC (Illumina) to calculate 16 epigenetic estimators. Additionally, we examined genome-wide genetic variation using the HumanOmniExpress BeadChip (Illumina) to gain insights into the genetic history of these populations. Results: Our results indicate that Native-American Wichí are epigenetically older compared to Criollos according to five epigenetic estimators. Analyses within the Criollos population reveal that global ancestry does not influence the differences observed, while local (chromosomal) ancestry shows positive associations between specific SNPs located in genomic regions over-represented by Native-American ancestry and measures of epigenetic age acceleration (AgeAccelHannum). Furthermore, we demonstrate that differences in population ecologies also contribute to observed epigenetic differences. Conclusions and implications: Overall, our study suggests that while the genomic history may partially account for the observed epigenetic differences, non-genetic factors, such as lifestyle and ecological factors, play a substantial role in the variability of epigenetic estimators, thereby contributing to variations in human epigenetic aging.

8.
Front Neurosci ; 17: 1227144, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37811322

RESUMEN

Xanthogranulomas are considered rare tumors, with their sellar and non-sellar frequency ranging from 1.6 to 7% among intracranial lesions, and described as a separate entity by the World Health Organization in 2000. The diagnosis of sellar xanthogranulomas is challenging, given their uncertain origin and clinical course. In addition, the limited reporting of sellar xanthogranuloma cases and the absence of characteristic images make these entities difficult to distinguish from other cystic lesions of the sellar region, such as adamantinomatous craniopharyngiomas, Rathke's cleft cysts, pituitary tumors, arachnoid cysts, epidermoid cysts, and dermoid cysts. Here, we describe the clinical presentation, radiological findings, immunohistochemical/histopathological analysis, and the ultrastructural examination by transmission electron microscopy of five sellar xanthogranulomas cases reported in two care centers in Cordoba, Argentina. Two males and three females between 37 and 73 years of age (average 51.8 years) presented with persistent headaches, generalized endocrine defects, and visual problems. MRI revealed cystic formations in the sellar region, which usually projected into adjacent tissues such as the suprasellar region or cavernous sinuses, and compressed other structures such as the optic chiasm, pituitary gland, and cranial nerves. All patients underwent surgical intervention to remove the tumor tissue. The histopathological analysis of the samples showed cellular tissue with a xanthogranulomatous appearance, inflammatory cellular infiltrate (mainly lymphocytes and macrophages), fibroblasts, abundant collagen fibers, and hemorrhages. An ultrastructural analysis helped to identify cellular infiltrates and granules resulting from tumor cell activity. The data support the hypothesis that sellar xanthogranulomas could occur as an inflammatory reaction secondary to the rupture and hemorrhage of a previous cystic process, thereby generating an expansion of the tumor body toward adjacent tissues. The information obtained from these cases contributes to the current knowledge about this disease's origin and clinical and histological evolution. However, the scarcity of patients and the observed phenotypic heterogeneity make its diagnosis still challenging. Undoubtedly, more investigations are needed to provide additional information in order to be able to achieve a more accurate diagnosis and effective treatment of this rare disease.

9.
Front Microbiol ; 14: 1243427, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37655342

RESUMEN

Neisseria gonorrhoeae (gonococcus) is an obligate human pathogen and the etiological agent of the sexually transmitted disease gonorrhea. The rapid rise in gonococcal resistance to all currently available antimicrobials has become a significant public health burden and the need to develop novel therapeutic and prophylactic tools is now a global priority. While high-throughput screening methods allowed rapid discovery of extremely potent monoclonal antibodies (mAbs) against viral pathogens, the field of bacteriology suffers from the lack of assays that allow efficient screening of large panels of samples. To address this point, we developed luminescence-based (L-ABA) and resazurin-based (R-ABA) antibody bactericidal assays that measure N. gonorrhoeae metabolic activity as a proxy of bacterial viability. Both L-ABA and R-ABA are applicable on the large scale for the rapid identification of bactericidal antibodies and were validated by conventional methods. Implementation of these approaches will be instrumental to the development of new medications and vaccines against N. gonorrhoeae and other bacterial pathogens to support the fight against antimicrobial resistance.

10.
JCO Clin Cancer Inform ; 7: e2300021, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37390377

RESUMEN

PURPOSE: Synthetic data are artificial data generated without including any real patient information by an algorithm trained to learn the characteristics of a real source data set and became widely used to accelerate research in life sciences. We aimed to (1) apply generative artificial intelligence to build synthetic data in different hematologic neoplasms; (2) develop a synthetic validation framework to assess data fidelity and privacy preservability; and (3) test the capability of synthetic data to accelerate clinical/translational research in hematology. METHODS: A conditional generative adversarial network architecture was implemented to generate synthetic data. Use cases were myelodysplastic syndromes (MDS) and AML: 7,133 patients were included. A fully explainable validation framework was created to assess fidelity and privacy preservability of synthetic data. RESULTS: We generated MDS/AML synthetic cohorts (including information on clinical features, genomics, treatment, and outcomes) with high fidelity and privacy performances. This technology allowed resolution of lack/incomplete information and data augmentation. We then assessed the potential value of synthetic data on accelerating research in hematology. Starting from 944 patients with MDS available since 2014, we generated a 300% augmented synthetic cohort and anticipated the development of molecular classification and molecular scoring system obtained many years later from 2,043 to 2,957 real patients, respectively. Moreover, starting from 187 MDS treated with luspatercept into a clinical trial, we generated a synthetic cohort that recapitulated all the clinical end points of the study. Finally, we developed a website to enable clinicians generating high-quality synthetic data from an existing biobank of real patients. CONCLUSION: Synthetic data mimic real clinical-genomic features and outcomes, and anonymize patient information. The implementation of this technology allows to increase the scientific use and value of real data, thus accelerating precision medicine in hematology and the conduction of clinical trials.


Asunto(s)
Hematología , Leucemia Mieloide Aguda , Humanos , Medicina de Precisión , Inteligencia Artificial , Algoritmos
11.
Animals (Basel) ; 13(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36978498

RESUMEN

Wound management is a fundamental task in standard clinical practice. Automated solutions already exist for humans, but there is a lack of applications regarding wound management for pets. Precise and efficient wound assessment is helpful to improve diagnosis and to increase the effectiveness of treatment plans for chronic wounds. In this work, we introduced a novel pipeline for the segmentation of pet wound images. Starting from a model pre-trained on human-based wound images, we applied a combination of transfer learning (TL) and active semi-supervised learning (ASSL) to automatically label a large dataset. Additionally, we provided a guideline for future applications of TL+ASSL training strategy on image datasets. We compared the effectiveness of the proposed training strategy, monitoring the performance of an EfficientNet-b3 U-Net model against the lighter solution provided by a MobileNet-v2 U-Net model. We obtained 80% of correctly segmented images after five rounds of ASSL training. The EfficientNet-b3 U-Net model significantly outperformed the MobileNet-v2 one. We proved that the number of available samples is a key factor for the correct usage of ASSL training. The proposed approach is a viable solution to reduce the time required for the generation of a segmentation dataset.

12.
J Clin Oncol ; 41(15): 2827-2842, 2023 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-36930857

RESUMEN

PURPOSE: Myelodysplastic syndromes (MDS) are heterogeneous myeloid neoplasms in which a risk-adapted treatment strategy is needed. Recently, a new clinical-molecular prognostic model, the Molecular International Prognostic Scoring System (IPSS-M) was proposed to improve the prediction of clinical outcome of the currently available tool (Revised International Prognostic Scoring System [IPSS-R]). We aimed to provide an extensive validation of IPSS-M. METHODS: A total of 2,876 patients with primary MDS from the GenoMed4All consortium were retrospectively analyzed. RESULTS: IPSS-M improved prognostic discrimination across all clinical end points with respect to IPSS-R (concordance was 0.81 v 0.74 for overall survival and 0.89 v 0.76 for leukemia-free survival, respectively). This was true even in those patients without detectable gene mutations. Compared with the IPSS-R based stratification, the IPSS-M risk group changed in 46% of patients (23.6% and 22.4% of subjects were upstaged and downstaged, respectively).In patients treated with hematopoietic stem cell transplantation (HSCT), IPSS-M significantly improved the prediction of the risk of disease relapse and the probability of post-transplantation survival versus IPSS-R (concordance was 0.76 v 0.60 for overall survival and 0.89 v 0.70 for probability of relapse, respectively). In high-risk patients treated with hypomethylating agents (HMA), IPSS-M failed to stratify individual probability of response; response duration and probability of survival were inversely related to IPSS-M risk.Finally, we tested the accuracy in predicting IPSS-M when molecular information was missed and we defined a minimum set of 15 relevant genes associated with high performance of the score. CONCLUSION: IPSS-M improves MDS prognostication and might result in a more effective selection of candidates to HSCT. Additional factors other than gene mutations can be involved in determining HMA sensitivity. The definition of a minimum set of relevant genes may facilitate the clinical implementation of the score.


Asunto(s)
Síndromes Mielodisplásicos , Recurrencia Local de Neoplasia , Humanos , Pronóstico , Estudios Retrospectivos , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/terapia , Factores de Riesgo
13.
J Pers Med ; 13(3)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36983660

RESUMEN

BACKGROUND: Benign renal tumors, such as renal oncocytoma (RO), can be erroneously diagnosed as malignant renal cell carcinomas (RCC), because of their similar imaging features. Computer-aided systems leveraging radiomic features can be used to better discriminate benign renal tumors from the malignant ones. The purpose of this work was to build a machine learning model to distinguish RO from clear cell RCC (ccRCC). METHOD: We collected CT images of 77 patients, with 30 cases of RO (39%) and 47 cases of ccRCC (61%). Radiomic features were extracted both from the tumor volumes identified by the clinicians and from the tumor's zone of transition (ZOT). We used a genetic algorithm to perform feature selection, identifying the most descriptive set of features for the tumor classification. We built a decision tree classifier to distinguish between ROs and ccRCCs. We proposed two versions of the pipeline: in the first one, the feature selection was performed before the splitting of the data, while in the second one, the feature selection was performed after, i.e., on the training data only. We evaluated the efficiency of the two pipelines in cancer classification. RESULTS: The ZOT features were found to be the most predictive by the genetic algorithm. The pipeline with the feature selection performed on the whole dataset obtained an average ROC AUC score of 0.87 ± 0.09. The second pipeline, in which the feature selection was performed on the training data only, obtained an average ROC AUC score of 0.62 ± 0.17. CONCLUSIONS: The obtained results confirm the efficiency of ZOT radiomic features in capturing the renal tumor characteristics. We showed that there is a significant difference in the performances of the two proposed pipelines, highlighting how some already published radiomic analyses could be too optimistic about the real generalization capabilities of the models.

14.
Cells ; 12(6)2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36980268

RESUMEN

The aim of the present study was to provide a comprehensive characterization of whole genome DNA methylation patterns in replicative and ionizing irradiation- or doxorubicin-induced premature senescence, exhaustively exploring epigenetic modifications in three different human cell types: in somatic diploid skin fibroblasts and in bone marrow- and adipose-derived mesenchymal stem cells. With CpG-wise differential analysis, three epigenetic signatures were identified: (a) cell type- and treatment-specific signature; (b) cell type-specific senescence-related signature; and (c) cell type-transversal replicative senescence-related signature. Cluster analysis revealed that only replicative senescent cells created a distinct group reflecting notable alterations in the DNA methylation patterns accompanying this cellular state. Replicative senescence-associated epigenetic changes seemed to be of such an extent that they surpassed interpersonal dissimilarities. Enrichment in pathways linked to the nervous system and involved in the neurological functions was shown after pathway analysis of genes involved in the cell type-transversal replicative senescence-related signature. Although DNA methylation clock analysis provided no statistically significant evidence on epigenetic age acceleration related to senescence, a persistent trend of increased biological age in replicative senescent cultures of all three cell types was observed. Overall, this work indicates the heterogeneity of senescent cells depending on the tissue of origin and the type of senescence inducer that could be putatively translated to a distinct impact on tissue homeostasis.


Asunto(s)
Senescencia Celular , Metilación de ADN , Humanos , Células Cultivadas , Senescencia Celular/genética , Metilación de ADN/genética , Epigénesis Genética , Fibroblastos/metabolismo
15.
Nat Commun ; 14(1): 1734, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977711

RESUMEN

Severe acute respiratory syndrome 2 Omicron BA.4 and BA.5 are characterized by high transmissibility and ability to escape natural and vaccine induced immunity. Here we test the neutralizing activity of 482 human monoclonal antibodies isolated from people who received two or three mRNA vaccine doses or from people vaccinated after infection. The BA.4 and BA.5 variants are neutralized only by approximately 15% of antibodies. Remarkably, the antibodies isolated after three vaccine doses target mainly the receptor binding domain Class 1/2, while antibodies isolated after infection recognize mostly the receptor binding domain Class 3 epitope region and the N-terminal domain. Different B cell germlines are used by the analyzed cohorts. The observation that mRNA vaccination and hybrid immunity elicit a different immunity against the same antigen is intriguing and its understanding may help to design the next generation of therapeutics and vaccines against coronavirus disease 2019.


Asunto(s)
COVID-19 , Humanos , COVID-19/prevención & control , Vacunas de ARNm , Anticuerpos Monoclonales , Inmunidad Adaptativa , Células Germinativas , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus
16.
Biochim Biophys Acta Gene Regul Mech ; 1866(2): 194923, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36822574

RESUMEN

Intrinsic and Rho-dependent transcription termination mechanisms regulate gene expression and recycle RNA polymerase in bacteria. Both the modes are well studied in Escherichia coli, and a few other organisms. The understanding of Rho function is limited in most other bacteria including mycobacteria. Here, we highlight the dominance of Rho-dependent termination in mycobacteria and validate Rho as a key regulatory factor. The lower abundance of intrinsic terminators, high cellular levels of Rho, and its genome-wide association with a majority of transcriptionally active genes indicate the pronounced role of Rho-mediated termination in Mycobacterium tuberculosis (Mtb). Rho modulates the termination of RNA synthesis for both protein-coding and stable RNA genes in Mtb. Concordantly, the depletion of Rho in mycobacteria impact its growth and enhances the transcription read-through at 3' ends of the transcription units. We demonstrate that MtbRho is catalytically active in the presence of RNA with varied secondary structures. These properties suggest an evolutionary adaptation of Rho as the efficient and preponderant mode of transcription termination in mycobacteria.


Asunto(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Estudio de Asociación del Genoma Completo , Transcripción Genética , Escherichia coli/genética , ARN/metabolismo
17.
Nat Commun ; 14(1): 53, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599850

RESUMEN

The continuous evolution of SARS-CoV-2 generated highly mutated variants able to escape natural and vaccine-induced primary immunity. The administration of a third mRNA vaccine dose induces a secondary response with increased protection. Here we investigate the longitudinal evolution of the neutralizing antibody response in four donors after three mRNA doses at single-cell level. We sorted 4100 spike protein specific memory B cells identifying 350 neutralizing antibodies. The third dose increases the antibody neutralization potency and breadth against all SARS-CoV-2 variants as observed with hybrid immunity. However, the B cell repertoire generating this response is different. The increases of neutralizing antibody responses is largely due to the expansion of B cell germlines poorly represented after two doses, and the reduction of germlines predominant after primary immunization. Our data show that different immunization regimens induce specific molecular signatures which should be considered while designing new vaccines and immunization strategies.


Asunto(s)
Formación de Anticuerpos , Linfocitos B , Vacunas contra la COVID-19 , COVID-19 , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación , Vacunas contra la COVID-19/inmunología , Linfocitos B/inmunología
18.
Cells ; 11(24)2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36552808

RESUMEN

Epigenetic clocks were initially developed to track chronological age, but accumulating evidence indicates that they can also predict biological age. They are usually based on the analysis of DNA methylation by genome-wide methods, but targeted approaches, based on the assessment of a small number of CpG sites, are advisable in several settings. In this study, we developed a targeted epigenetic clock purposely optimized for the measurement of biological age. The clock includes six genomic regions mapping in ELOVL2, NHLRC1, AIM2, EDARADD, SIRT7 and TFAP2E genes, selected from a re-analysis of existing microarray data, whose DNA methylation is measured by EpiTYPER assay. In healthy subjects (n = 278), epigenetic age calculated using the targeted clock was highly correlated with chronological age (Spearman correlation = 0.89). Most importantly, and in agreement with previous results from genome-wide clocks, epigenetic age was significantly higher and lower than expected in models of increased (persons with Down syndrome, n = 62) and decreased (centenarians, n = 106; centenarians' offspring, n = 143; nutritional intervention in elderly, n = 233) biological age, respectively. These results support the potential of our targeted epigenetic clock as a new marker of biological age and open its evaluation in large cohorts to further promote the assessment of biological age in healthcare practice.


Asunto(s)
Envejecimiento , Epigénesis Genética , Anciano , Anciano de 80 o más Años , Humanos , Envejecimiento/genética , Islas de CpG/genética , Metilación de ADN/genética , Epigenómica/métodos , Ubiquitina-Proteína Ligasas/genética , Centenarios , Síndrome de Down
19.
Acta Neuropathol Commun ; 10(1): 181, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517866

RESUMEN

Creutzfeldt-Jakob disease (CJD) is characterized by a broad phenotypic spectrum regarding symptoms, progression, and molecular features. Current sporadic CJD (sCJD) classification recognizes six main clinical-pathological phenotypes. This work investigates the molecular basis of the phenotypic heterogeneity of prion diseases through a multi-omics analysis of the two most common sCJD subtypes: MM1 and VV2. We performed DNA target sequencing on 118 genes on a cohort of 48 CJD patients and full exome RNA sequencing on post-mortem frontal cortex tissue on a subset of this cohort. DNA target sequencing identified multiple potential genetic contributors to the disease onset and phenotype, both in terms of coding, damaging-predicted variants, and enriched groups of SNPs in the whole cohort and the two subtypes. The results highlight a different functional impairment, with VV2 associated with higher impairment of the pathways related to dopamine secretion, regulation of calcium release and GABA signaling, showing some similarities with Parkinson's disease both on a genomic and a transcriptomic level. MM1 showed a gene expression profile with several traits shared with different neurodegenerative, without an apparent distinctive characteristic or similarities with a specific disease. In addition, integrating genomic and transcriptomic data led to the discovery of several sites of ADAR-mediated RNA editing events, confirming and expanding previous findings in animal models. On the transcriptomic level, this work represents the first application of RNA sequencing on CJD human brain samples. Here, a good clusterization of the transcriptomic profiles of the two subtypes was achieved, together with the finding of several differently impaired pathways between the two subtypes. The results add to the understanding of the molecular features associated with sporadic CJD and its most common subtypes, revealing strain-specific genetic signatures and functional similarities between VV2 and Parkinson's disease and providing preliminary evidence of RNA editing modifications in human sCJD.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Enfermedad de Parkinson , Animales , Humanos , Encéfalo/patología , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patología , ADN/metabolismo , Genómica , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Edición de ARN , Transcriptoma
20.
Sci Rep ; 12(1): 16595, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36198716

RESUMEN

The ability to detect and characterize bacteria within a biological sample is crucial for the monitoring of infections and epidemics, as well as for the study of human health and its relationship with commensal microorganisms. To this aim, a commonly used technique is the 16S rRNA gene targeted sequencing. PCR-amplified 16S sequences derived from the sample of interest are usually clustered into the so-called Operational Taxonomic Units (OTUs) based on pairwise similarities. Then, representative OTU sequences are compared with reference (human-made) databases to derive their phylogeny and taxonomic classification. Here, we propose a new reference-free approach to define the phylogenetic distance between bacteria based on protein domains, which are the evolving units of proteins. We extract the protein domain profiles of 3368 bacterial genomes and we use an ecological approach to model their Relative Species Abundance distribution. Based on the model parameters, we then derive a new measurement of phylogenetic distance. Finally, we show that such model-based distance is capable of detecting differences between bacteria in cases in which the 16S rRNA-based method fails, providing a possibly complementary approach , which is particularly promising for the analysis of bacterial populations measured by shotgun sequencing.


Asunto(s)
Bacterias , Bacterias/genética , Humanos , Filogenia , Dominios Proteicos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...