Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36768652

RESUMEN

Long-term human space missions such as a future journey to Mars could be characterized by several hazards, among which radiation is one the highest-priority problems for astronaut health. In this work, exploiting a pre-existing interface between the BIANCA biophysical model and the FLUKA Monte Carlo transport code, a study was performed to calculate astronaut absorbed doses and equivalent doses following GCR exposure under different shielding conditions. More specifically, the interface with BIANCA allowed us to calculate both the RBE for cell survival, which is related to non-cancer effects, and that for chromosome aberrations, related to the induction of stochastic effects, including cancer. The results were then compared with cancer and non-cancer astronaut dose limits. Concerning the stochastic effects, the equivalent doses calculated by multiplying the absorbed dose by the RBE for chromosome aberrations ("high-dose method") were similar to those calculated using the Q-values recommended by ICRP. For a 650-day mission at solar minimum (representative of a possible Mars mission scenario), the obtained values are always lower than the career limit recommended by ICRP (1 Sv), but higher than the limit of 600 mSv recently adopted by NASA. The comparison with the JAXA limits is more complex, since they are age and sex dependent. Concerning the deterministic limits, even for a 650-day mission at solar minimum, the values obtained by multiplying the absorbed dose by the RBE for cell survival are largely below the limits established by the various space agencies. Following this work, BIANCA, interfaced with an MC transport code such as FLUKA, can now predict RBE values for cell death and chromosome aberrations following GCR exposure. More generally, both at solar minimum and at solar maximum, shielding of 10 g/cm2 Al seems to be a better choice than 20 g/cm2 for astronaut protection against GCR.


Asunto(s)
Radiación Cósmica , Protección Radiológica , Vuelo Espacial , Humanos , Astronautas , Dosis de Radiación , Protección Radiológica/métodos
2.
Int J Paleopathol ; 38: 1-12, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35679660

RESUMEN

OBJECTIVE: To differentially diagnose cranial lesions noted on a medieval skeleton and explore the importance of comorbidity. MATERIALS: A skull of an adult female with osteolytic and osteoblastic lesions, edentulism, and an ectopic tooth from an ossuary of the Church of Santa Maria in Vico del Lazio, Frosinone Italy, dating to the Middle Ages. METHODS: Macroscopic observations of the remains, CT scan, and differential diagnosis was undertaken. RESULTS: A diagnosis of metastatic cancer (potentially breast cancer) or metastatic neuroblastoma (NBL) is offered. CONCLUSIONS: Considering the noted comorbidities, this case might represent a rare case of metastatic neuroblastoma. SIGNIFICANCE: The exploration of comorbidity, in this case the presence of metastatic carcinoma and edentulism, has tremendous potential to expand our knowledge about cancer in the past. LIMITATIONS: Lack of postcranial elements. SUGGESTIONS FOR FURTHER RESEARCH: Clinical and paleopathological investigation of comorbidity in modern and archeological populations to develop an evolutionary perspective on the presence of cancer in the past.


Asunto(s)
Carcinoma , Neuroblastoma , Adulto , Comorbilidad , Diagnóstico Diferencial , Femenino , Humanos , Italia , Persona de Mediana Edad , Neuroblastoma/patología , Cráneo/patología
3.
Phys Med Biol ; 67(11)2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35576922

RESUMEN

Objective.The main objective of this work consists of applying, for the first time, the BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations) biophysical model to the RBE calculation for C-ion cancer patients, and comparing the outcomes with those obtained by the LEM I model, which is applied in clinics. Indeed, the continuous development of heavy-ion cancer therapy requires modelling of biological effects of ion beams on tumours and normal tissues. The relative biological effectiveness (RBE) of heavy ions is higher than that of protons, with a significant variation along the beam path. Therefore, it requires a precise modelling, especially for the pencil-beam scanning technique. Currently, two radiobiological models, LEM I and MKM, are in use for heavy ions in scanned pencil-beam facilities.Approach.Utilizing an interface with the FLUKA Particle Therapy Tool, BIANCA was applied to re-calculate the RBE-weighted dose distribution for carbon-ion treatment of three patients (chordoma, head-and-neck and prostate) previously irradiated at CNAO, where radiobiological optimization was based on LEM I. The predictions obtained by BIANCA were based either on chordoma cell survival (RBEsurv), or on dicentric aberrations in peripheral blood lymphocytes (RBEab), which are indicators of late normal tissue damage, including secondary tumours. The simulation outcomes were then compared with those provided by LEM I.Main results.While in the target and in the entrance channel BIANCA predictions were lower than those obtained by LEM I, the two models provided very similar results in the considered OAR. The observed differences betweenRBEsurvandRBEab(which were also dependent on fractional dose and LET) suggest that in normal tissues the information on cell survival should be integrated by information more closely related to the induction of late damage, such as chromosome aberrations.Significance.This work showed that BIANCA is suitable for treatment plan optimization in ion-beam therapy, especially considering that it can predict both cell survival and chromosome aberrations and has previously shown good agreement with carbon-ion experimental data.


Asunto(s)
Cordoma , Radioterapia de Iones Pesados , Carbono/uso terapéutico , Aberraciones Cromosómicas , Radioterapia de Iones Pesados/métodos , Humanos , Iones , Masculino , Planificación de la Radioterapia Asistida por Computador/métodos , Efectividad Biológica Relativa
4.
J Radiol Prot ; 42(2)2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35453133

RESUMEN

Space research seems to be object of a renewed interest, also considering that human missions to the Moon, and possibly Mars, are being planned. Among the risks affecting such missions, astronauts' exposure to space radiation is a major concern. In this work, the question of the evaluation of biological damage by Galactic Cosmic Rays (GCR) was addressed by a biophysical model called BIophysical ANalysis of Cell death and chromosome Aberrations (BIANCA), which simulates the induction of cell death and chromosome aberrations by different ions. While previously BIANCA has been validated for calculating cell death along hadrontherapy beams up to oxygen, herein the approach was extended up to Fe ions. Specifically, experimental survival curves available in literature for V79 cells irradiated by Si-, Ne-, Ar- and Fe-ions were reproduced, and a reference radiobiological database describing V79 cell survival as a function of ion type (1 ⩽Z⩽ 26), energy and dose was constructed. Analogous databases were generated for Chinese hamster ovary hamster cells and human skin fibroblasts, finding good agreement between simulations and data. Concerning chromosome aberrations, which are regarded as radiation risk biomarkers, dicentric data in human lymphocytes irradiated by heavy ions up to iron were reproduced, and a radiobiological database allowing calculation of lymphocyte dicentric yields as a function of dose, ion type (1 ⩽Z⩽ 26) and energy was constructed. Following interface between BIANCA and the FLUKA Monte Carlo transport code, a feasibility study was performed to calculate the relative biological effectiveness (RBE) of different GCR spectrum components, for both dicentrics and cell death. Fe-ions, although representing only 10% of the total absorbed dose, were found to be responsible for about 35%-40% of the RBE-weighted dose. Interestingly, the RBE for dicentrics was higher than that for cell survival. More generally, this work shows that BIANCA can calculate RBE values for cell death and lymphocyte dicentrics not only for ion therapy, but also for space radiation.


Asunto(s)
Radiación Cósmica , Iones Pesados , Animales , Células CHO , Muerte Celular , Aberraciones Cromosómicas , Radiación Cósmica/efectos adversos , Cricetinae , Cricetulus , Humanos , Hierro
5.
Phys Med Biol ; 67(15)2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35395649

RESUMEN

Helium ion beam therapy for the treatment of cancer was one of several developed and studied particle treatments in the 1950s, leading to clinical trials beginning in 1975 at the Lawrence Berkeley National Laboratory. The trial shutdown was followed by decades of research and clinical silence on the topic while proton and carbon ion therapy made debuts at research facilities and academic hospitals worldwide. The lack of progression in understanding the principle facets of helium ion beam therapy in terms of physics, biological and clinical findings persists today, mainly attributable to its highly limited availability. Despite this major setback, there is an increasing focus on evaluating and establishing clinical and research programs using helium ion beams, with both therapy and imaging initiatives to supplement the clinical palette of radiotherapy in the treatment of aggressive disease and sensitive clinical cases. Moreover, due its intermediate physical and radio-biological properties between proton and carbon ion beams, helium ions may provide a streamlined economic steppingstone towards an era of widespread use of different particle species in light and heavy ion therapy. With respect to the clinical proton beams, helium ions exhibit superior physical properties such as reduced lateral scattering and range straggling with higher relative biological effectiveness (RBE) and dose-weighted linear energy transfer (LETd) ranging from ∼4 keVµm-1to ∼40 keVµm-1. In the frame of heavy ion therapy using carbon, oxygen or neon ions, where LETdincreases beyond 100 keVµm-1, helium ions exhibit similar physical attributes such as a sharp lateral penumbra, however, with reduced radio-biological uncertainties and without potentially spoiling dose distributions due to excess fragmentation of heavier ion beams, particularly for higher penetration depths. This roadmap presents an overview of the current state-of-the-art and future directions of helium ion therapy: understanding physics and improving modeling, understanding biology and improving modeling, imaging techniques using helium ions and refining and establishing clinical approaches and aims from learned experience with protons. These topics are organized and presented into three main sections, outlining current and future tasks in establishing clinical and research programs using helium ion beams-A. Physics B. Biological and C. Clinical Perspectives.


Asunto(s)
Radioterapia de Iones Pesados , Terapia de Protones , Carbono/uso terapéutico , Radioterapia de Iones Pesados/métodos , Helio/uso terapéutico , Iones , Protones , Efectividad Biológica Relativa
6.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34639218

RESUMEN

Chromosome aberrations are widely considered among the best biomarkers of radiation health risk due to their relationship with late cancer incidence. In particular, aberrations in peripheral blood lymphocytes (PBL) can be regarded as indicators of hematologic toxicity, which is a major limiting factor of radiotherapy total dose. In this framework, a radiobiological database describing the induction of PBL dicentrics as a function of ion type and energy was developed by means of the BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations) biophysical model, which has been previously applied to predict the effectiveness of therapeutic-like ion beams at killing tumour cells. This database was then read by the FLUKA Monte Carlo transport code, thus allowing us to calculate the Relative Biological Effectiveness (RBE) for dicentric induction along therapeutic C-ion beams. A comparison with previous results showed that, while in the higher-dose regions (e.g., the Spread-Out Bragg Peak, SOBP), the RBE for dicentrics was lower than that for cell survival. In the lower-dose regions (e.g., the fragmentation tail), the opposite trend was observed. This work suggests that, at least for some irradiation scenarios, calculating the biological effectiveness of a hadrontherapy beam solely based on the RBE for cell survival may lead to an underestimation of the risk of (late) damage to healthy tissues. More generally, following this work, BIANCA has gained the capability of providing RBE predictions not only for cell killing, but also for healthy tissue damage.


Asunto(s)
Muerte Celular , Aberraciones Cromosómicas/efectos de la radiación , Radioterapia de Iones Pesados/efectos adversos , Linfocitos/patología , Método de Montecarlo , Neoplasias/radioterapia , Efectividad Biológica Relativa , Biofisica , Humanos , Linfocitos/efectos de los fármacos
7.
Sci Rep ; 11(1): 2725, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526802

RESUMEN

The characteristic depth dose deposition of ion beams, with a maximum at the end of their range (Bragg peak) allows for local treatment delivery, resulting in better sparing of the adjacent healthy tissues compared to other forms of external beam radiotherapy treatments. However, the optimal clinical exploitation of the favorable ion beam ballistic is hampered by uncertainties in the in vivo Bragg peak position. Ionoacoustics is based on the detection of thermoacoustic pressure waves induced by a properly pulsed ion beam (e.g., produced by modern compact accelerators) to image the irradiated volume. Co-registration between ionoacoustics and ultrasound imaging offers a promising opportunity to monitor the ion beam and patient anatomy during the treatment. Nevertheless, the detection of the ionoacoustic waves is challenging due to very low pressure amplitudes and frequencies (mPa/kHz) observed in clinical applications. We investigate contrast agents to enhance the acoustic emission. Ultrasound microbubbles are used to increase the ionoacoustic frequency around the microbubble resonance frequency. Moreover, India ink is investigated as a possible mean to enhance the signal amplitude by taking advantage of additional optical photon absorption along the ion beam and subsequent photoacoustic effect. We report amplitude increase of up to 200% of the ionoacoustic signal emission in the MHz frequency range by combining microbubbles and India ink contrast agents.

8.
Phys Rev Lett ; 125(23): 231802, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33337188

RESUMEN

Measuring the cosmic ray flux over timescales comparable to the age of the Solar System, ∼4.5 Gyr, could provide a new window on the history of the Earth, the Solar System, and even our Galaxy. We present a technique to indirectly measure the rate of cosmic rays as a function of time using the imprints of atmospheric neutrinos in "paleo-detectors," natural minerals that record damage tracks from nuclear recoils. Minerals commonly found on Earth are ≲1 Gyr old, providing the ability to look back across cosmic ray history on timescales of the same order as the age of the Solar System. Given a collection of differently aged samples dated with reasonable accuracy, this technique is particularly well-suited to measuring historical changes in the cosmic ray flux at Earth and is broadly applicable in astrophysics and geophysics.

9.
Int J Mol Sci ; 21(11)2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492909

RESUMEN

(1) Background: Cancer ion therapy is constantly growing thanks to its increased precision and, for heavy ions, its increased biological effectiveness (RBE) with respect to conventional photon therapy. The complex dependence of RBE on many factors demands biophysical modeling. Up to now, only the Local Effect Model (LEM), the Microdosimetric Kinetic Model (MKM), and the "mixed-beam" model are used in clinics. (2) Methods: In this work, the BIANCA biophysical model, after extensive benchmarking in vitro, was applied to develop a database predicting cell survival for different ions, energies, and doses. Following interface with the FLUKA Monte Carlo transport code, for the first time, BIANCA was benchmarked against in vivo data obtained by C-ion or proton irradiation of the rat spinal cord. The latter is a well-established model for CNS (central nervous system) late effects, which, in turn, are the main dose-limiting factors for head-and-neck tumors. Furthermore, these data have been considered to validate the LEM version applied in clinics. (3) Results: Although further benchmarking is desirable, the agreement between simulations and data suggests that BIANCA can predict RBE for C-ion or proton treatment of head-and-neck tumors. In particular, the agreement with proton data may be relevant if the current assumption of a constant proton RBE of 1.1 is revised. (4) Conclusions: This work provides the basis for future benchmarking against patient data, as well as the development of other databases for specific tumor types and/or normal tissues.


Asunto(s)
Cordoma/radioterapia , Neoplasias de Cabeza y Cuello/radioterapia , Radioterapia de Iones Pesados , Terapia de Protones/métodos , Médula Espinal/metabolismo , Animales , Células CHO , Carbono/química , Supervivencia Celular/efectos de la radiación , Sistema Nervioso Central/efectos de la radiación , Cricetinae , Cricetulus , Bases de Datos Factuales , Humanos , Cinética , Método de Montecarlo , Radiometría , Ratas , Efectividad Biológica Relativa
10.
Front Behav Neurosci ; 12: 167, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30116184

RESUMEN

Creativity, meant as the ability to produce novel, original and suitable ideas, has received increased attention by research in the last years, especially from neuroaesthetics and social neuroscience. Besides the research conducted on the neural correlates of such capacities, previous work tried to answer the question of whether it is possible to enhance creativity through cognitive and neural stimulation. In particular, transcranial direct current stimulation (tDCS) has been applied to increase neuronal excitability in those areas related to creativity. However, being a complex construct that applies to a huge variety of situations, available results are often confusing and inconsistent. Thus, in the present critical review, after selecting original research articles investigating creativity with tDCS, results will be reviewed and framed according to the different effects of tDCS and its underlying mechanisms, which can be defined as follows: the promotion of self-focused attention; the disruption of inhibiting mechanisms; the enhancement of creative thinking; the promotion of artistic enactment. Finally, a theoretical perspective, the creative on/off model, will be provided to integrate the reported evidence with respect to both anatomical and functional issues and propose a cognitive explanation of the emergence of creative thinking.

11.
Phys Med Biol ; 63(14): 145018, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29873299

RESUMEN

In vivo range monitoring techniques are necessary in order to fully take advantage of the high dose gradients deliverable in hadrontherapy treatments. Positron emission tomography (PET) scanners can be used to monitor beam-induced activation in tissues and hence measure the range. The INSIDE (Innovative Solutions for In-beam DosimEtry in Hadrontherapy) in-beam PET scanner, installed at the Italian National Center of Oncological Hadrontherapy (CNAO, Pavia, Italy) synchrotron facility, has already been successfully tested in vivo during a proton therapy treatment. We discuss here the system performance evaluation with carbon ion beams, in view of future in vivo tests. The work is focused on the analysis of activity images obtained with therapeutic treatments delivered to polymethyl methacrylate (PMMA) phantoms, as well as on the test of an innovative and robust Monte Carlo simulation technique for the production of reliable prior activity maps. Images are reconstructed using different integration intervals, so as to monitor the activity evolution during and after the treatment. Three procedures to compare activity images are presented, namely Pearson correlation coefficient, Beam's eye view and overall view. Images of repeated irradiations of the same treatments are compared to assess the integration time necessary to provide reproducible images. The range agreement between simulated and experimental images is also evaluated, so as to validate the simulation capability to provide sound prior information. The results indicate that at treatment end, or at most 20 s afterwards, the range measurement is reliable within 1-2 mm, when comparing both different experimental sessions and data with simulations. In conclusion, this work shows that the INSIDE in-beam PET scanner performance is promising towards its in vivo test with carbon ions.


Asunto(s)
Radioterapia de Iones Pesados , Fantasmas de Imagen , Tomografía de Emisión de Positrones/métodos , Terapia de Protones , Radiometría/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Método de Montecarlo , Radiometría/métodos , Sincrotrones
12.
Radiat Oncol ; 13(1): 2, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29316969

RESUMEN

BACKGROUND: Due to their favorable physical and biological properties, helium ion beams are increasingly considered a promising alternative to proton beams for radiation therapy. Hence, this work aims at comparing in-silico the treatment of brain and ocular meningiomas with protons and helium ions, using for the first time a dedicated Monte Carlo (MC) based treatment planning engine (MCTP) thoroughly validated both in terms of physical and biological models. METHODS: Starting from clinical treatment plans of four patients undergoing proton therapy with a fixed relative biological effectiveness (RBE) of 1.1 and a fraction dose of 1.8 Gy(RBE), new treatment plans were optimized with MCTP for both protons (with variable and fixed RBE) and helium ions (with variable RBE) under the same constraints derived from the initial clinical plans. The resulting dose distributions were dosimetrically compared in terms of dose volume histograms (DVH) parameters for the planning target volume (PTV) and the organs at risk (OARs), as well as dose difference maps. RESULTS: In most of the cases helium ion plans provided a similar PTV coverage as protons with a consistent trend of superior OAR sparing. The latter finding was attributed to the ability of helium ions to offer sharper distal and lateral dose fall-offs, as well as a more favorable differential RBE variation in target and normal tissue. CONCLUSIONS: Although more studies are needed to investigate the clinical potential of helium ions for different tumour entities, the results of this work based on an experimentally validated MC engine support the promise of this modality with state-of-the-art pencil beam scanning delivery, especially in case of tumours growing in close proximity of multiple OARs such as meningiomas.


Asunto(s)
Helio/uso terapéutico , Neoplasias Meníngeas/radioterapia , Meningioma/radioterapia , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Iones/uso terapéutico , Método de Montecarlo , Efectividad Biológica Relativa
13.
Artículo en Inglés | MEDLINE | ID: mdl-29046738

RESUMEN

BACKGROUND: We have previously reported a high incidence of colorectal cancer (CRC) in carriers of pathogenic MLH1 variants (path_MLH1) despite follow-up with colonoscopy including polypectomy. METHODS: The cohort included Finnish carriers enrolled in 3-yearly colonoscopy (n = 505; 4625 observation years) and carriers from other countries enrolled in colonoscopy 2-yearly or more frequently (n = 439; 3299 observation years). We examined whether the longer interval between colonoscopies in Finland could explain the high incidence of CRC and whether disease expression correlated with differences in population CRC incidence. RESULTS: Cumulative CRC incidences in carriers of path_MLH1 at 70-years of age were 41% for males and 36% for females in the Finnish series and 58% and 55% in the non-Finnish series, respectively (p > 0.05). Mean time from last colonoscopy to CRC was 32.7 months in the Finnish compared to 31.0 months in the non-Finnish (p > 0.05) and was therefore unaffected by the recommended colonoscopy interval. Differences in population incidence of CRC could not explain the lower point estimates for CRC in the Finnish series. Ten-year overall survival after CRC was similar for the Finnish and non-Finnish series (88% and 91%, respectively; p > 0.05). CONCLUSIONS: The hypothesis that the high incidence of CRC in path_MLH1 carriers was caused by a higher incidence in the Finnish series was not valid. We discuss whether the results were influenced by methodological shortcomings in our study or whether the assumption that a shorter interval between colonoscopies leads to a lower CRC incidence may be wrong. This second possibility is intriguing, because it suggests the dogma that CRC in path_MLH1 carriers develops from polyps that can be detected at colonoscopy and removed to prevent CRC may be erroneous. In view of the excellent 10-year overall survival in the Finnish and non-Finnish series we remain strong advocates of current surveillance practices for those with LS pending studies that will inform new recommendations on the best surveillance interval.

14.
Gut ; 66(3): 464-472, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-26657901

RESUMEN

OBJECTIVE: Estimates of cancer risk and the effects of surveillance in Lynch syndrome have been subject to bias, partly through reliance on retrospective studies. We sought to establish more robust estimates in patients undergoing prospective cancer surveillance. DESIGN: We undertook a multicentre study of patients carrying Lynch syndrome-associated mutations affecting MLH1, MSH2, MSH6 or PMS2. Standardised information on surveillance, cancers and outcomes were collated in an Oracle relational database and analysed by age, sex and mutated gene. RESULTS: 1942 mutation carriers without previous cancer had follow-up including colonoscopic surveillance for 13 782 observation years. 314 patients developed cancer, mostly colorectal (n=151), endometrial (n=72) and ovarian (n=19). Cancers were detected from 25 years onwards in MLH1 and MSH2 mutation carriers, and from about 40 years in MSH6 and PMS2 carriers. Among first cancer detected in each patient the colorectal cancer cumulative incidences at 70 years by gene were 46%, 35%, 20% and 10% for MLH1, MSH2, MSH6 and PMS2 mutation carriers, respectively. The equivalent cumulative incidences for endometrial cancer were 34%, 51%, 49% and 24%; and for ovarian cancer 11%, 15%, 0% and 0%. Ten-year crude survival was 87% after any cancer, 91% if the first cancer was colorectal, 98% if endometrial and 89% if ovarian. CONCLUSIONS: The four Lynch syndrome-associated genes had different penetrance and expression. Colorectal cancer occurred frequently despite colonoscopic surveillance but resulted in few deaths. Using our data, a website has been established at http://LScarisk.org enabling calculation of cumulative cancer risks as an aid to genetic counselling in Lynch syndrome.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis/epidemiología , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Endometriales/epidemiología , Neoplasias Ováricas/epidemiología , Vigilancia de la Población , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Niño , Colonoscopía , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico por imagen , Neoplasias Colorrectales Hereditarias sin Poliposis/mortalidad , Proteínas de Unión al ADN/genética , Bases de Datos Factuales , Neoplasias Endometriales/mortalidad , Femenino , Expresión Génica , Heterocigoto , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Homólogo 1 de la Proteína MutL/genética , Proteína 2 Homóloga a MutS/genética , Neoplasias Ováricas/mortalidad , Estudios Prospectivos , Tasa de Supervivencia , Adulto Joven
15.
Gut ; 66(9): 1657-1664, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-27261338

RESUMEN

OBJECTIVE: Today most patients with Lynch syndrome (LS) survive their first cancer. There is limited information on the incidences and outcome of subsequent cancers. The present study addresses three questions: (i) what is the cumulative incidence of a subsequent cancer; (ii) in which organs do subsequent cancers occur; and (iii) what is the survival following these cancers? DESIGN: Information was collated on prospectively organised surveillance and prospectively observed outcomes in patients with LS who had cancer prior to inclusion and analysed by age, gender and genetic variants. RESULTS: 1273 patients with LS from 10 countries were followed up for 7753 observation years. 318 patients (25.7%) developed 341 first subsequent cancers, including colorectal (n=147, 43%), upper GI, pancreas or bile duct (n=37, 11%) and urinary tract (n=32, 10%). The cumulative incidences for any subsequent cancer from age 40 to age 70 years were 73% for pathogenic MLH1 (path_MLH1), 76% for path_MSH2 carriers and 52% for path_MSH6 carriers, and for colorectal cancer (CRC) the cumulative incidences were 46%, 48% and 23%, respectively. Crude survival after any subsequent cancer was 82% (95% CI 76% to 87%) and 10-year crude survival after CRC was 91% (95% CI 83% to 95%). CONCLUSIONS: Relative incidence of subsequent cancer compared with incidence of first cancer was slightly but insignificantly higher than cancer incidence in patients with LS without previous cancer (range 0.94-1.49). The favourable survival after subsequent cancers validated continued follow-up to prevent death from cancer. The interactive website http://lscarisk.org was expanded to calculate the risks by gender, genetic variant and age for subsequent cancer for any patient with LS with previous cancer.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales Hereditarias sin Poliposis , Proteínas de Unión al ADN/genética , Homólogo 1 de la Proteína MutL/genética , Proteína 2 Homóloga a MutS/genética , Adulto , Anciano , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias Colorrectales Hereditarias sin Poliposis/epidemiología , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Reparación de la Incompatibilidad de ADN/genética , Progresión de la Enfermedad , Europa (Continente)/epidemiología , Femenino , Variación Genética , Mutación de Línea Germinal , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Medición de Riesgo/métodos , Medición de Riesgo/estadística & datos numéricos , Análisis de Supervivencia
16.
J Med Imaging (Bellingham) ; 4(1): 011005, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27981069

RESUMEN

The quality assurance of particle therapy treatment is a fundamental issue that can be addressed by developing reliable monitoring techniques and indicators of the treatment plan correctness. Among the available imaging techniques, positron emission tomography (PET) has long been investigated and then clinically applied to proton and carbon beams. In 2013, the Innovative Solutions for Dosimetry in Hadrontherapy (INSIDE) collaboration proposed an innovative bimodal imaging concept that combines an in-beam PET scanner with a tracking system for charged particle imaging. This paper presents the general architecture of the INSIDE project but focuses on the in-beam PET scanner that has been designed to reconstruct the particles range with millimetric resolution within a fraction of the dose delivered in a treatment of head and neck tumors. The in-beam PET scanner has been recently installed at the Italian National Center of Oncologic Hadrontherapy (CNAO) in Pavia, Italy, and the commissioning phase has just started. The results of the first beam test with clinical proton beams on phantoms clearly show the capability of the in-beam PET to operate during the irradiation delivery and to reconstruct on-line the beam-induced activity map. The accuracy in the activity distal fall-off determination is millimetric for therapeutic doses.

17.
Front Oncol ; 6: 116, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27242956

RESUMEN

Monte Carlo (MC) codes are increasingly spreading in the hadrontherapy community due to their detailed description of radiation transport and interaction with matter. The suitability of a MC code for application to hadrontherapy demands accurate and reliable physical models capable of handling all components of the expected radiation field. This becomes extremely important for correctly performing not only physical but also biologically based dose calculations, especially in cases where ions heavier than protons are involved. In addition, accurate prediction of emerging secondary radiation is of utmost importance in innovative areas of research aiming at in vivo treatment verification. This contribution will address the recent developments of the FLUKA MC code and its practical applications in this field. Refinements of the FLUKA nuclear models in the therapeutic energy interval lead to an improved description of the mixed radiation field as shown in the presented benchmarks against experimental data with both (4)He and (12)C ion beams. Accurate description of ionization energy losses and of particle scattering and interactions lead to the excellent agreement of calculated depth-dose profiles with those measured at leading European hadron therapy centers, both with proton and ion beams. In order to support the application of FLUKA in hospital-based environments, Flair, the FLUKA graphical interface, has been enhanced with the capability of translating CT DICOM images into voxel-based computational phantoms in a fast and well-structured way. The interface is capable of importing also radiotherapy treatment data described in DICOM RT standard. In addition, the interface is equipped with an intuitive PET scanner geometry generator and automatic recording of coincidence events. Clinically, similar cases will be presented both in terms of absorbed dose and biological dose calculations describing the various available features.

18.
J Natl Cancer Inst ; 108(2)2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26582061

RESUMEN

BACKGROUND: Recent guidelines recommend the Lynch Syndrome prediction models MMRPredict, MMRPro, and PREMM1,2,6 for the identification of MMR gene mutation carriers. We compared the predictive performance and clinical usefulness of these prediction models to identify mutation carriers. METHODS: Pedigree data from CRC patients in 11 North American, European, and Australian cohorts (6 clinic- and 5 population-based sites) were used to calculate predicted probabilities of pathogenic MLH1, MSH2, or MSH6 gene mutations by each model and gene-specific predictions by MMRPro and PREMM1,2,6. We examined discrimination with area under the receiver operating characteristic curve (AUC), calibration with observed to expected (O/E) ratio, and clinical usefulness using decision curve analysis to select patients for further evaluation. All statistical tests were two-sided. RESULTS: Mutations were detected in 539 of 2304 (23%) individuals from the clinic-based cohorts (237 MLH1, 251 MSH2, 51 MSH6) and 150 of 3451 (4.4%) individuals from the population-based cohorts (47 MLH1, 71 MSH2, 32 MSH6). Discrimination was similar for clinic- and population-based cohorts: AUCs of 0.76 vs 0.77 for MMRPredict, 0.82 vs 0.85 for MMRPro, and 0.85 vs 0.88 for PREMM1,2,6. For clinic- and population-based cohorts, O/E deviated from 1 for MMRPredict (0.38 and 0.31, respectively) and MMRPro (0.62 and 0.36) but were more satisfactory for PREMM1,2,6 (1.0 and 0.70). MMRPro or PREMM1,2,6 predictions were clinically useful at thresholds of 5% or greater and in particular at greater than 15%. CONCLUSIONS: MMRPro and PREMM1,2,6 can well be used to select CRC patients from genetics clinics or population-based settings for tumor and/or germline testing at a 5% or higher risk. If no MMR deficiency is detected and risk exceeds 15%, we suggest considering additional genetic etiologies for the cause of cancer in the family.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales/complicaciones , Proteínas de Unión al ADN/genética , Heterocigoto , Proteína 2 Homóloga a MutS/genética , Mutación , Proteínas Nucleares/genética , Adulto , Anciano , Área Bajo la Curva , Australia/epidemiología , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/epidemiología , Europa (Continente)/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Homólogo 1 de la Proteína MutL , América del Norte/epidemiología , Linaje , Valor Predictivo de las Pruebas , Prevalencia , Curva ROC
19.
Tumori ; 102(1): 40-4, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26219574

RESUMEN

AIMS AND BACKGROUND: Guidelines for surveillance in patients with familial adenomatous polyposis (FAP) recommend mutation carriers to undergo periodic colorectal examination starting in the early teens. Performing colonoscopy in children may lead to complications. Wireless capsule endoscopy (WCE) has been introduced recently to evaluate both the upper and lower gastrointestinal tract, and seems suitable as a first screening examination for adolescents. The aim of this study was to evaluate the pros and cons of WCE. METHODS: This was a retrospective review of a single institution database of adolescent patients with FAP identified through the Hereditary Colorectal Tumor Registry between 2007 and 2013. The main outcomes were identification of upper and lower gastrointestinal tract polyps, tolerance of the examination, and number and size of polyps. RESULTS: Of 46 adolescent patients with FAP, 14 (30.4%) patients carrying adenomatous polyposis coli gene (APC) mutation, 6 male and 8 female, age (median, range) 12 (10-17) years, body mass index 19 (13-24), underwent WCE as first screening examination. The examination was completed in 13 patients (93.3%). Wireless capsule endoscopy identified the duodenal papilla in 4 patients and colonic and rectal polyps in all 13 patients. In 7 patients, fewer than 25 polyps were identified. No complications were recorded related to the use of the video capsule. CONCLUSIONS: Wireless capsule endoscopy is feasible and well-tolerated as a first screening examination in adolescent patients. It cannot be used as alternative to the colonoscopy, but could improve compliance with colonoscopy, and increase early adherence to a surveillance program.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/diagnóstico , Endoscopía Capsular , Colonoscopía , Mutación , Vigilancia de la Población/métodos , Poliposis Adenomatosa del Colon/genética , Adolescente , Endoscopía Capsular/instrumentación , Niño , Bases de Datos Factuales , Estudios de Factibilidad , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Sistema de Registros , Estudios Retrospectivos
20.
Carcinogenesis ; 36(4): 452-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25742745

RESUMEN

Lynch syndrome (LS) is an inherited predisposition cancer syndrome, typically caused by germline mutations in the mismatch repair genes MLH1, MSH2, MSH6 and PMS2. In the last years, a role for epimutations of the same genes has also been reported. MLH1 promoter methylation is a well known mechanism of somatic inactivation in tumors, and more recently, several cases of constitutional methylation have been identified. In four subjects affected by multiple tumors and belonging to a suspected LS family, we detected a novel secondary MLH1 gene epimutation. The methylation of MLH1 promoter was always linked in cis with a 997 bp-deletion (c.-168_c.116+713del), that removed exon 1 and partially involved the promoter of the same gene. Differently from cases with constitutional primary MLH1 inactivation, this secondary methylation was allele-specific and CpGs of the residual promoter region were totally methylated, leading to complete allele silencing. In the colon tumor of the proband, MLH1 and PMS2 expression was completely lost as a consequence of a pathogenic somatic point mutation (MLH1 c.199G>A, p.Gly67Arg) that also abrogated local methylation by destroying a CpG site. The evidences obtained highlight how MLH1 mutations and epimutations can reciprocally influence each other and suggest that an altered structure of the MLH1 locus results in epigenetic alteration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Adenosina Trifosfatasas/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Metilación de ADN/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/genética , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Adenosina Trifosfatasas/biosíntesis , Secuencia de Bases , Reparación de la Incompatibilidad de ADN , Enzimas Reparadoras del ADN/biosíntesis , Proteínas de Unión al ADN/biosíntesis , Femenino , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto , Homólogo 1 de la Proteína MutL , Proteínas Nucleares/biosíntesis , Análisis de Secuencia de ADN , Eliminación de Secuencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...