Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(8): 1047, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38223922

RESUMEN

Retraction of 'Carbon content drives high temperature superconductivity in a carbonaceous sulfur hydride below 100 GPa' by G. Alexander Smith et al., Chem. Commun., 2022, 58, 9064-9067, https://doi.org/10.1039/D2CC03170A.

5.
Philos Trans A Math Phys Eng Sci ; 381(2258): 20220346, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37634534

RESUMEN

We have analysed [Formula: see text] with a combination of synchrotron X-ray diffraction and X-ray absorption spectroscopy across a pressure range of [Formula: see text] GPa with thermal annealing by a [Formula: see text] laser allowing access to all of the known high-density polymorphs of [Formula: see text], and here report their crystallographic information. The metastability of the post-rutile [Formula: see text]-[Formula: see text] and [Formula: see text] structures in [Formula: see text] are investigated by experiment and PW-DFT simulations, revealing a complex energetic landscape and suggesting a significant dependence of the observed phases on the pressure-temperature pathway taken in experiment. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 1)'.

6.
Nature ; 615(7951): 244-250, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890373

RESUMEN

The absence of electrical resistance exhibited by superconducting materials would have enormous potential for applications if it existed at ambient temperature and pressure conditions. Despite decades of intense research efforts, such a state has yet to be realized1,2. At ambient pressures, cuprates are the material class exhibiting superconductivity to the highest critical superconducting transition temperatures (Tc), up to about 133 K (refs. 3-5). Over the past decade, high-pressure 'chemical precompression'6,7 of hydrogen-dominant alloys has led the search for high-temperature superconductivity, with demonstrated Tc approaching the freezing point of water in binary hydrides at megabar pressures8-13. Ternary hydrogen-rich compounds, such as carbonaceous sulfur hydride, offer an even larger chemical space to potentially improve the properties of superconducting hydrides14-21. Here we report evidence of superconductivity on a nitrogen-doped lutetium hydride with a maximum Tc of 294 K at 10 kbar, that is, superconductivity at room temperature and near-ambient pressures. The compound was synthesized under high-pressure high-temperature conditions and then-after full recoverability-its material and superconducting properties were examined along compression pathways. These include temperature-dependent resistance with and without an applied magnetic field, the magnetization (M) versus magnetic field (H) curve, a.c. and d.c. magnetic susceptibility, as well as heat-capacity measurements. X-ray diffraction (XRD), energy-dispersive X-ray (EDX) and theoretical simulations provide some insight into the stoichiometry of the synthesized material. Nevertheless, further experiments and simulations are needed to determine the exact stoichiometry of hydrogen and nitrogen, and their respective atomistic positions, in a greater effort to further understand the superconducting state of the material.

7.
Rev Sci Instrum ; 93(8): 083901, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050120

RESUMEN

We present a portable CO2 laser heating system for in situ x-ray absorption spectroscopy (XAS) studies at 16-BM-D (High Pressure Collaborative Access Team, Advanced Photon Source, Argonne National Laboratory). Back scattering optical measurements are made possible by the implementation of a Ge beamsplitter. Optical pyrometry is conducted in the near-infrared, and our temperature measurements are free of chromatic aberration due to the implementation of the peak-scaling method [A. Kavner and W. R. Panero, Phys. Earth Planet. Inter. 143-144, 527-539 (2004) and A. Kavner and C. Nugent, Rev. Sci. Instrum. 79, 024902 (2008)] and mode scrambling of the input signal. Laser power stabilization is established using electronic feedback, providing a steady power over second timescales [Childs et al., Rev. Sci. Instrum. 91, 103003 (2020)]-crucial for longer XAS collections. Examples of in situ high pressure-temperature extended x-ray absorption fine structure measurements of ZrO2 are presented to demonstrate this new capability.

9.
Chem Commun (Camb) ; 58(65): 9064-9067, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35837875

RESUMEN

We report a previously unobserved superconducting state of the photosynthesized carbonaceous sulfur hydride (C-S-H) system with a maximum TC of 191(1) K below 100 GPa. The properties of C-S-H are dependent on carbon content, and X-ray diffraction and simulations reveal the system remains molecular-like up to 100 GPa.

10.
Chem Commun (Camb) ; 58(46): 6634-6637, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35587042

RESUMEN

TcS2 undergoes a charge transfer insulator to metal transition above 28 GPa. Laser annealing reveals a kinetically hindered high pressure arsenopyrite phase that is recoverable to ambient. The new phase is similar to the Mn-dichalcogenides rather than the expected Re-dichalcogenides and involves the formation of S-S and Tc-Tc bonds.

11.
Phys Rev Lett ; 127(1): 016401, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34270285

RESUMEN

A reversible density driven insulator to metal to insulator transition in high-spin MnS_{2} is experimentally observed, leading with a colossal electrical resistance drop of 10^{8} Ω by 12 GPa. Density functional theory simulations reveal the metallization to be unexpectedly driven by previously unoccupied S_{2}^{2-} σ_{3p}^{*} antibonding states crossing the Fermi level. This is a unique variant of the charge transfer insulator to metal transition for negative charge transfer insulators having anions with an unsaturated valence. By 36 GPa the emergence of the low-spin insulating arsenopyrite (P2_{1}/c) is confirmed, and the bulk metallicity is broken with the system returning to an insulative electronic state.

12.
Chem Commun (Camb) ; 57(65): 8079-8082, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34296729

RESUMEN

We demonstrate the synthesis and phase stability of TcN, Tc2N, and a substoichiometric TcNx from 0 to 50 GPa and to 2500 K in a laser-heated diamond anvil cell. At least potential recoverability is demonstrated for each compound. TcN adopts a previously unpredicted structure identified via crystal structure prediction.

13.
Phys Rev Lett ; 126(11): 117003, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33798352

RESUMEN

The recent observation of room-temperature superconductivity will undoubtedly lead to a surge in the discovery of new, dense, hydrogen-rich materials. The rare earth metal superhydrides are predicted to have very high-T_{c} superconductivity that is tunable with changes in stoichiometry or doping. Here we report the synthesis of an yttrium superhydride that exhibits superconductivity at a critical temperature of 262 K at 182±8 GPa. A palladium thin film assists the synthesis by protecting the sputtered yttrium from oxidation and promoting subsequent hydrogenation. Phonon-mediated superconductivity is established by the observation of zero resistance, an isotope effect and the reduction of T_{c} under an external magnetic field. The upper critical magnetic field is 103 T at zero temperature.

14.
Inorg Chem ; 60(8): 6004-6015, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33788545

RESUMEN

The AMnO2 delafossites (A = Na, Cu) are model frustrated antiferromagnets, with triangular layers of Mn3+ spins. At low temperatures (TN = 65 K), a C2/m → P1̅ transition is found in CuMnO2, which breaks frustration and establishes magnetic order. In contrast to this clean transition, A = Na only shows short-range distortions at TN. Here, we report a systematic crystallographic, spectroscopic, and theoretical investigation of CuMnO2. We show that, even in stoichiometric samples, nonzero anisotropic Cu displacements coexist with magnetic order. Using X-ray/neutron diffraction and Raman scattering, we show that high pressures act to decouple these degrees of freedom. This manifests as an isostuctural phase transition at ∼10 GPa, with a reversible collapse of the c-axis. This is shown to be the high-pressure analogue of the c-axis negative thermal expansion seen at ambient pressure. Density functional theory (DFT) simulations confirm that dynamical instabilities of the Cu+ cations and edge-shared MnO6 layers are intertwined at ambient pressure. However, high pressure selectively activates the former, before an eventual predicted reemergence of magnetism at the highest pressures. Our results show that the lattice dynamics and local structure of CuMnO2 are quantitatively different from nonmagnetic Cu delafossites and raise questions about the role of intrinsic inhomogeneity in frustrated antiferromagnets.

15.
RSC Adv ; 11(11): 6353-6360, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35423149

RESUMEN

The (NH4)2[ReF6] (1) salt was studied by X-ray diffraction, Raman spectroscopy, theoretical calculations, and magnetic measurements. 1 crystallizes in the trigonal space group P3̄m1 (Re-F = 1.958(5) Å). In the Raman spectrum of 1, splitting of the observed peaks was observed and correlated to the valence frequencies of vibration of the [ReF6]2- anion. The study of the magnetic properties of 1, through DC and AC magnetic susceptibility measurements, reveals the coexistence of metamagnetism and slow relaxation of magnetization at low temperature, which is unusual in the molecular systems based on the paramagnetic 5d metal ions reported so far.

16.
Nature ; 588(7837): E18, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33214713

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Rev Sci Instrum ; 91(10): 103003, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33138611

RESUMEN

High pressure-temperature conditions can be readily achieved through the laser-heated diamond anvil cell (LH-DAC). A stable laser source is required for reliable in situ measurements of the sample, as the sample is small with a thermal time constant of the order of microseconds. Here, we show that the power instabilities typical of CO2 gas lasers used in LH-DAC's are ±5% at the second timescale and ∼±50% at the microsecond timescale. We also demonstrate that the pointing instability of the laser requires either a diffuser or an integrating sphere for reliable total power measurements with small sized detectors. We present a simple solution for stabilizing the power of a CO2 gas laser on the second timescale by the direct modulation of the current across the tube and another solution that stabilizes the power to the microsecond timescale by externally modulating the CO2 laser beam. Both solutions can achieve a ±0.3% power stability.

18.
Nature ; 586(7829): 373-377, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33057222

RESUMEN

One of the long-standing challenges in experimental physics is the observation of room-temperature superconductivity1,2. Recently, high-temperature conventional superconductivity in hydrogen-rich materials has been reported in several systems under high pressure3-5. An  important discovery leading to room-temperature superconductivity is the pressure-driven disproportionation of hydrogen sulfide (H2S) to H3S, with a confirmed transition temperature of 203 kelvin at 155 gigapascals3,6. Both H2S and CH4 readily mix with hydrogen to form guest-host structures at lower pressures7, and are of  comparable size at 4 gigapascals. By introducing methane at low pressures into the H2S + H2 precursor mixture for H3S, molecular exchange is allowed within a large assemblage of van der Waals solids that are hydrogen-rich with H2 inclusions; these guest-host structures become the building blocks of superconducting compounds at extreme conditions. Here we report superconductivity in a photochemically transformed carbonaceous sulfur hydride system, starting from elemental precursors, with a maximum superconducting transition temperature of 287.7 ± 1.2 kelvin (about 15 degrees Celsius) achieved at 267 ± 10 gigapascals. The superconducting state is observed over a broad pressure range in the diamond anvil cell, from 140 to 275 gigapascals, with a sharp upturn in transition temperature above 220 gigapascals. Superconductivity is established by the observation of zero resistance, a magnetic susceptibility of up to 190 gigapascals, and reduction of the transition temperature under an external magnetic field of up to 9 tesla, with an upper critical magnetic field of about 62 tesla according to the Ginzburg-Landau model at zero temperature. The light, quantum nature of hydrogen limits the structural and stoichiometric determination of the system by X-ray scattering techniques, but Raman spectroscopy is used to probe the chemical and structural transformations before metallization. The introduction of chemical tuning within our ternary system could enable the preservation of the properties of room-temperature superconductivity at lower pressures.

19.
J Phys Chem Lett ; 10(18): 5351-5356, 2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31436423

RESUMEN

Many rutile-type materials are characterized by a softness in shear with pressure which is coupled to a Raman-active librational motion. Combining direct studies of anion positions in SnO2 with measurements of its electronic properties, we find a correlation between O sublattice disorder between 5 and 10 GPa and an anomalous decrease up to 4 orders of magnitude in electrical resistance. Hypotheses into the atomistic nature of the phenomenon are evaluated via ab initio calculations guided by extended X-ray absorption fine structure spectroscopy analysis, and the most likely mechanism is found to be the displacement of single anions resulting from the pressure-induced softening of the librational mode. On the basis of this mechanism, we propose that the same behavior should feature across all materials exhibiting a rutile → CaCl2 phase transition and that conductivity in other rutile-type materials could be facilitated at ambient pressure by appropriate design of devices to enhance defects of this nature.

20.
J Synchrotron Radiat ; 26(Pt 4): 1245-1252, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31274450

RESUMEN

The transparent conducting oxide, SnO2, is a promising optoelectronic material with predicted tailorable properties via pressure-mediated band gap opening. While such electronic properties are typically modeled assuming perfect crystallinity, disordering of the O sublattice under pressure is qualitatively known. Here a quantitative approach is thus employed, combining extended X-ray absorption fine-structure (EXAFS) spectroscopy with X-ray diffraction, to probe the extent of Sn-O bond anharmonicities in the high-pressure cubic (Pa\bar{3}) SnO2 - formed as a single phase and annealed by CO2 laser heating to 2648 ± 41 K at 44.5 GPa. This combinational study reveals and quantifies a large degree of disordering in the O sublattice, while the Sn lattice remains ordered. Moreover, this study describes implementation of direct laser heating of non-metallic samples by CO2 laser alongside EXAFS, and the high quality of data which may be achieved at high pressures in a diamond anvil cell when appropriate thermal annealing is applied.


Asunto(s)
Presión , Compuestos de Estaño/química , Difracción de Rayos X/métodos , Rayos Láser , Espectroscopía de Absorción de Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...