Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Endocrinol ; 2022: 3734572, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36263361

RESUMEN

Obesity is a condition that has been linked to male infertility. The current hypothesis regarding the cause of infertility is that sperm are highly sensitive to reactive oxygen species (ROS) during spermatogenesis in the testes and transit through the epididymides, so the increase in ROS brought on by obesity could cause oxidative stress. The aim of this study was to evaluate whether the activity of the enzymes catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX) is capable of counteracting oxidative stress in sperm. The male Wistar rat was used as an overweight and obesity model, and analysis of fertility in these groups was carried out including the control group. Serum testosterone levels were determined, and the scrotal fat, testes, and epididymides were extracted. The epididymides were separated ini0 3 principal parts (caput, corpus, and cauda) before evaluating sperm viability, sperm morphology, damage to desoxyribonucleic acid of the sperm, and ROS production. The protein content and specific activity of the three enzymes mentioned above were evaluated. Results showed a gain in body weight and scrotal fat in the overweight and obese groups with decreased parameters for serum testosterone levels and sperm viability and morphology. Fertility was not greatly affected and no DNA integrity damage was found, although ROS in the epididymal sperm increased markedly and Raman spectroscopy showed a disulfide bridge collapse associated with DNA. The specific activities of CAT and GPX increased in the overweight and obesity groups, but those of SOD did not change. The amounts of proteins in the testes and epididymides decreased. These findings confirm that overweight and obesity decrease concentrations of free testosterone and seem to decrease protein content, causing poor sperm quality. Implications. An increase in scrotal fat in these conditions fosters an increase of ROS, but the increase of GPX and CAT activity seems to avoid oxidative stress increase in the sperm without damaging your DNA.

2.
Arch Environ Contam Toxicol ; 62(3): 445-54, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22002785

RESUMEN

Effects of endocrine disruptors on reproductive variables of top predators, such as alligators and crocodiles, have long been cited. Due to their long life span, these predators provide us with historic contaminant annals. In this study we tried to test whether lifestyle (free-ranging vs. farm animals) and reproductive age of Morelet's crocodiles in Campeche, Mexico, affect the bioaccumulation of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). Subsequently, we tested to see whether their concentration was related to steroid hormones (testosterone and estradiol-17ß) levels once normal cyclic hormone variation and reproductive age had been taken into account. From the group of contaminants considered (analyzed as families), only frequency of hexachlorocyclohexanes (∑HCH) and ∑PCB permitted analyses. Whereas there was a greater concentration of ∑HCH bioaccumulated by free-ranging crocodiles, ∑PCB was found in equal quantities in free-ranging and farm animals. No difference was observed in relation to reproductive age for any of the contaminants. However, ∑PCB concentrations were related to testosterone levels among female crocodiles. This androgenic effect of ∑PCB has not been reported previously. Because testosterone promotes aggressive behavior in vertebrates, excessive aggression during the estrous season, or when female crocodiles should be caring for their young, could result in reproductive failure in Morelet's crocodiles and potential long-term decline of the population.


Asunto(s)
Caimanes y Cocodrilos/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Disruptores Endocrinos/metabolismo , Disruptores Endocrinos/toxicidad , Monitoreo del Ambiente , Femenino , Hidrocarburos Clorados/metabolismo , Hidrocarburos Clorados/toxicidad , Masculino , México , Plaguicidas/metabolismo , Plaguicidas/toxicidad , Bifenilos Policlorados/metabolismo , Bifenilos Policlorados/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminación Química del Agua/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA