Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSphere ; 9(4): e0006224, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38530016

RESUMEN

Mosquito-borne viruses cause various infectious diseases in humans and animals. Tibet orbivirus (TIBOV), a newly identified arbovirus, efficiently replicates in different types of vertebrate and mosquito cells, with its neutralizing antibodies detected in cattle and goats. However, despite being isolated from Culicoides midges, Anopheles, and Culex mosquitoes, there has been a notable absence of systematic studies on its vector competence. Thus, in this study, Aedes aegypti and Culex pipiens pallens were reared in the laboratory to measure vector susceptibility through blood-feeding infection. Furthermore, RNA sequencing was used to examine the overall alterations in the Ae. aegypti transcriptome following TIBOV infection. The results revealed that Ae. aegypti exhibited a high susceptibility to TIBOV compared to Cx. p. pallens. Effective replication of the virus in Ae. aegypti midguts occurred when the blood-feeding titer of TIBOV exceeded 105 plaque-forming units mL-1. Nevertheless, only a few TIBOV RNA-positive samples were detected in the saliva of Ae. aegypti and Cx. p. pallens, suggesting that these mosquito species may not be the primary vectors for TIBOV. Moreover, at 2 dpi of TIBOV, numerous antimicrobial peptides downstream of the Toll and Imd signaling pathways were significantly downregulated in Ae. aegypti, indicating that TIBOV suppressed mosquitos' defense to survive in the vector at an early stage. Subsequently, the stress-activated protein kinase JNK, a crucial component of the MAPK signaling pathway, exhibited significant upregulation. Certain genes were also enriched in the MAPK signaling pathway in TIBOV-infected Ae. aegypti at 7 dpi.IMPORTANCETibet orbivirus (TIBOV) is an understudied arbovirus of the genus Orbivirus. Our study is the first-ever attempt to assess the vector susceptibility of this virus in two important mosquito vectors, Aedes aegypti and Culex pipiens pallens. Additionally, we present transcriptome data detailing the interaction between TIBOV and the immune system of Ae. aegypti, which expands the knowledge about orbivirus infection and its interaction with mosquitoes.


Asunto(s)
Aedes , Culex , Mosquitos Vectores , Orbivirus , Animales , Aedes/virología , Aedes/genética , Culex/virología , Culex/genética , Mosquitos Vectores/virología , Mosquitos Vectores/genética , Orbivirus/genética , Orbivirus/fisiología , Femenino , Replicación Viral , Saliva/virología , Transcriptoma , Tibet
2.
PLoS Negl Trop Dis ; 16(7): e0010642, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35849620

RESUMEN

The global impact of mosquito-borne diseases has increased significantly over recent decades. Ebinur Lake virus (EBIV), a newly classified orthobunyavirus, is reported to be highly pathogenic in adult mice. The evaluation of vector competence is essential for predicting the arbovirus transmission risk. Here, Aedes aegypti was applied to evaluate EBIV infection and dissemination in mosquitos. Our experiments indicated that Ae. aegypti had the possibility to spread EBIV (with a transmission rate of up to 11.8% at 14 days post-infection) through biting, with the highest viral dose in a single mosquito's saliva reaching 6.3 plaque-forming units. The highest infection, dissemination and ovary infection rates were 70%, 42.9%, and 29.4%, respectively. The high viral infection rates in Ae. aegypti ovaries imply the possibility of EBIV vertical transmission. Ae. aegypti was highly susceptible to intrathoracic infection and the saliva-positive rate reached 90% at 10 days post-infection. Transcriptomic analysis revealed Toll and Imd signaling pathways were implicated in the mosquito's defensive response to EBIV infection. Defensin C and chitinase 10 were continuously downregulated in mosquitoes infected via intrathoracic inoculation of EBIV. Comprehensive analysis of the vector competence of Ae. aegypti for EBIV in laboratory has indicated the potential risk of EBIV transmission through mosquitoes. Moreover, our findings support a complex interplay between EBIV and the immune system of mosquito, which could affect its vector competence.


Asunto(s)
Aedes , Orthobunyavirus , Infección por el Virus Zika , Virus Zika , Animales , Femenino , Inmunidad , Ratones , Mosquitos Vectores , Carga Viral , Virus Zika/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...