Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 323(6): L676-L682, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36218276

RESUMEN

The in utero environment is sensitive to toxicant exposure, altering the health and growth of the fetus, and thus sensitive to contaminant exposure. Though recent clinical data suggest that e-cigarette use does no further harm to birth outcomes than a nicotine patch, this does not account for the effects of vaping during pregnancy on the long-term health of offspring. Pregnant mice were exposed to: 1) e-cigarette vapor with nicotine (PV + Nic; 2% Nic in 50:50 propylene glycol: vegetable glycerin), 2) e-cigarette vapor without nicotine [PV; (50:50 propylene glycol:vegetable glycerin)], or 3) HEPA filtered air (FA). Dams were removed from exposure upon giving birth. At 5 mo of age, pulmonary function tests on the offspring revealed female and male mice from the PV group had greater lung stiffness (Ers) and alveolar stiffness (H) compared with the FA group. Furthermore, baseline compliance (Crs) was reduced in female mice from the PV group and in male mice from the PV and PV + Nic groups. Lastly, female mice had decreased forced expiratory volume (FEV0.1) in the PV group, but not in the male groups, compared with the FA group. Lung histology revealed increased collagen deposition around the vessels/airways and in alveolar tissue in PV and PV + Nic groups. Furthermore, goblet hyperplasia was observed in PV male and PV/PV + Nic female mice. Our work shows that in utero exposure to e-cigarette vapor, regardless of nicotine presence, causes lung dysfunction and structural impairments that persist in the offspring to adulthood.


Asunto(s)
Cigarrillo Electrónico a Vapor , Sistemas Electrónicos de Liberación de Nicotina , Embarazo , Masculino , Femenino , Ratones , Animales , Cigarrillo Electrónico a Vapor/toxicidad , Nicotina/toxicidad , Glicerol , Pulmón , Propilenglicol/toxicidad
2.
Toxicol Lett ; 370: 66-73, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36122649

RESUMEN

Ambient particulate matter (PM) exposure increases risk for cardiopulmonary health problems which may be exacerbated in a stressful environment. Co-exposure to PM and stress characterizes the experience of many deployed military personnel and first responders but has not been thoroughly investigated. This is especially relevant to military personnel who have been exposed to high PM levels in conjunction with stressful military conflict situations. To understand the mechanisms and time-course of the health consequences following burn pit exposure, we exposed mice to moderate levels of ambient PM less than 2.5 µM in diameter (PM2.5) alone or in combination with psychological stress. We found male mice exposed to PM2.5 alone or in combination with stress had significantly reduced pulmonary function when subjected to methacholine, indicating increased airway hyperreactivity. These mice experienced increased goblet cell hyperplasia in their lungs, with no change in alveolar density. Mice exposed to PM2.5 and/or stress also exhibited reduced cardiac contractility, right ventricular (RV) output, and changes in RV capillary density and cardiac inflammatory markers. Taken together, these data indicate that short-term exposure to PM2.5 with or without stress causes a clear reduction in pulmonary and cardiac function. We believe that this model is well-suited for the study of military and other occupational exposures, and future work will identify potential mechanisms, including the inflammatory progression of these co-exposures.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Cardiopatías , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Animales , Exposición a Riesgos Ambientales , Pulmón/química , Masculino , Cloruro de Metacolina , Ratones , Material Particulado/análisis , Material Particulado/toxicidad , Estrés Psicológico/complicaciones
3.
Life Sci ; 298: 120469, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35283176

RESUMEN

AIMS: Metabolic function/dysfunction is central to aging biology. This is well illustrated by the Polymerase Gamma (POLG) mutant mouse where a key residue of the mitochondrial DNA polymerase is mutated (D257A), causing loss of mitochondrial DNA stability and dramatically accelerated aging processes. Given known cardiac phenotypes in the POLG mutant, we sought to characterize the course of cardiac dysfunction in the POLG mutant to guide future intervention studies. MATERIALS AND METHODS: Cardiac echocardiography and terminal hemodynamic analyses were used to define the course of dysfunction in the right and left cardiac ventricles in the POLG mutant. We also conducted RNA-seq analysis on cardiac right ventricles to identify mechanisms engaged by severe metabolic dysfunction and compared this analysis to several publically available datasets. KEY FINDINGS: Interesting sex differences were noted as female POLG mutants died earlier than male POLG mutants and LV chamber diameters were impacted earlier in females than males. Moreover, male mutants showed LV wall thinning while female mutant LV walls were thicker. Both males and females displayed significant RV hypertrophy. POLG mutants displayed a gene expression pattern associated with inflammation, fibrosis, and heart failure. Finally, comparative omics analyses of publically available data provide additional mechanistic and therapeutic insights. SIGNIFICANCE: Aging-associated cardiac dysfunction is a growing clinical problem. This work uncovers sex-specific cardiac responses to severe metabolic dysfunction that are reminiscent of patterns seen in human heart failure and provides insights to the molecular mechanisms engaged downstream of severe metabolic dysfunction that warrant further investigation.


Asunto(s)
Cardiopatías , Insuficiencia Cardíaca , Animales , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Femenino , Masculino , Ratones , Mutación , Remodelación Ventricular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA