Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(11): 6424-6440, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38801073

RESUMEN

TIMELESS (TIM) in the fork protection complex acts as a scaffold of the replisome to prevent its uncoupling and ensure efficient DNA replication fork progression. Nevertheless, its underlying basis for coordinating leading and lagging strand synthesis to limit single-stranded DNA (ssDNA) exposure remains elusive. Here, we demonstrate that acute degradation of TIM at ongoing DNA replication forks induces the accumulation of ssDNA gaps stemming from defective Okazaki fragment (OF) processing. Cells devoid of TIM fail to support the poly(ADP-ribosyl)ation necessary for backing up the canonical OF processing mechanism mediated by LIG1 and FEN1. Consequently, recruitment of XRCC1, a known effector of PARP1-dependent single-strand break repair, to post-replicative ssDNA gaps behind replication forks is impaired. Physical disruption of the TIM-PARP1 complex phenocopies the rapid loss of TIM, indicating that the TIM-PARP1 interaction is critical for the activation of this compensatory pathway. Accordingly, combined deficiency of FEN1 and the TIM-PARP1 interaction leads to synergistic DNA damage and cytotoxicity. We propose that TIM is essential for the engagement of PARP1 to the replisome to coordinate lagging strand synthesis with replication fork progression. Our study identifies TIM as a synthetic lethal target of OF processing enzymes that can be exploited for cancer therapy.


Asunto(s)
Proteínas de Ciclo Celular , Replicación del ADN , ADN de Cadena Simple , Péptidos y Proteínas de Señalización Intracelular , Poli(ADP-Ribosa) Polimerasa-1 , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , ADN/metabolismo , ADN/genética , ADN Ligasa (ATP)/metabolismo , ADN Ligasa (ATP)/genética , Reparación del ADN , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Endonucleasas de ADN Solapado/metabolismo , Endonucleasas de ADN Solapado/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética
2.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37445667

RESUMEN

DNA replication is a tightly controlled process that ensures the faithful duplication of the genome. However, DNA damage arising from both endogenous and exogenous assaults gives rise to DNA replication stress associated with replication fork slowing or stalling. Therefore, protecting the stressed fork while prompting its recovery to complete DNA replication is critical for safeguarding genomic integrity and cell survival. Specifically, the plasticity of the replication fork in engaging distinct DNA damage tolerance mechanisms, including fork reversal, repriming, and translesion DNA synthesis, enables cells to overcome a variety of replication obstacles. Furthermore, stretches of single-stranded DNA generated upon fork stalling trigger the activation of the ATR kinase, which coordinates the cellular responses to replication stress by stabilizing the replication fork, promoting DNA repair, and controlling cell cycle and replication origin firing. Deregulation of the ATR checkpoint and aberrant levels of chronic replication stress is a common characteristic of cancer and a point of vulnerability being exploited in cancer therapy. Here, we discuss the various adaptive responses of a replication fork to replication stress and the roles of ATR signaling that bring fork stabilization mechanisms together. We also review how this knowledge is being harnessed for the development of checkpoint inhibitors to trigger the replication catastrophe of cancer cells.


Asunto(s)
Reparación del ADN , Replicación del ADN , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Ciclo Celular , ADN , Daño del ADN , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo
3.
Nucleic Acids Res ; 51(12): 6246-6263, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37144518

RESUMEN

The structure of DNA replication forks is preserved by TIMELESS (TIM) in the fork protection complex (FPC) to support seamless fork progression. While the scaffolding role of the FPC to couple the replisome activity is much appreciated, the detailed mechanism whereby inherent replication fork damage is sensed and counteracted during DNA replication remains largely elusive. Here, we implemented an auxin-based degron system that rapidly triggers inducible proteolysis of TIM as a source of endogenous DNA replication stress and replisome dysfunction to dissect the signaling events that unfold at stalled forks. We demonstrate that acute TIM degradation activates the ATR-CHK1 checkpoint, whose inhibition culminates in replication catastrophe by single-stranded DNA accumulation and RPA exhaustion. Mechanistically, unrestrained replisome uncoupling, excessive origin firing, and aberrant reversed fork processing account for the synergistic fork instability. Simultaneous TIM loss and ATR inactivation triggers DNA-PK-dependent CHK1 activation, which is unexpectedly necessary for promoting fork breakage by MRE11 and catastrophic cell death. We propose that acute replisome dysfunction results in a hyper-dependency on ATR to activate local and global fork stabilization mechanisms to counteract irreversible fork collapse. Our study identifies TIM as a point of replication vulnerability in cancer that can be exploited with ATR inhibitors.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular , Replicación del ADN , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Proteínas Nucleares/metabolismo , Humanos
4.
Genetics ; 220(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34739048

RESUMEN

The auxin-inducible degradation system in C. elegans allows for spatial and temporal control of protein degradation via heterologous expression of a single Arabidopsis thaliana F-box protein, transport inhibitor response 1 (AtTIR1). In this system, exogenous auxin (Indole-3-acetic acid; IAA) enhances the ability of AtTIR1 to function as a substrate recognition component that adapts engineered degron-tagged proteins to the endogenous C. elegans E3 ubiquitin ligases complex [SKR-1/2-CUL-1-F-box (SCF)], targeting them for degradation by the proteosome. While this system has been employed to dissect the developmental functions of many C. elegans proteins, we have found that several auxin-inducible degron (AID)-tagged proteins are constitutively degraded by AtTIR1 in the absence of auxin, leading to undesired loss-of-function phenotypes. In this manuscript, we adapt an orthogonal auxin derivative/mutant AtTIR1 pair [C. elegans AID version 2 (C.e.AIDv2)] that transforms the specificity of allosteric regulation of TIR1 from IAA to one that is dependent on an auxin derivative harboring a bulky aryl group (5-Ph-IAA). We find that a mutant AtTIR1(F79G) allele that alters the ligand-binding interface of TIR1 dramatically reduces ligand-independent degradation of multiple AID*-tagged proteins. In addition to solving the ectopic degradation problem for some AID-targets, the addition of 5-Ph-IAA to culture media of animals expressing AtTIR1(F79G) leads to more penetrant loss-of-function phenotypes for AID*-tagged proteins than those elicited by the AtTIR1-IAA pairing at similar auxin analog concentrations. The improved specificity and efficacy afforded by the mutant AtTIR1(F79G) allele expand the utility of the AID system and broaden the number of proteins that can be effectively targeted with it.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Caenorhabditis elegans , Proteínas F-Box , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...