Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1495, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932102

RESUMEN

Enzyme-catalyzed replication of nucleic acid sequences is a prerequisite for the survival and evolution of biological entities. Before the advent of protein synthesis, genetic information was most likely stored in and replicated by RNA. However, experimental systems for sustained RNA-dependent RNA-replication are difficult to realise, in part due to the high thermodynamic stability of duplex products and the low chemical stability of catalytic RNAs. Using a derivative of a group I intron as a model for an RNA replicase, we show that heated air-water interfaces that are exposed to a plausible CO2-rich atmosphere enable sense and antisense RNA replication as well as template-dependent synthesis and catalysis of a functional ribozyme in a one-pot reaction. Both reactions are driven by autonomous oscillations in salt concentrations and pH, resulting from precipitation of acidified dew droplets, which transiently destabilise RNA duplexes. Our results suggest that an abundant Hadean microenvironment may have promoted both replication and synthesis of functional RNAs.


Asunto(s)
ARN Catalítico , ARN Catalítico/genética , ARN Catalítico/metabolismo , Conformación de Ácido Nucleico , ARN/genética , ARN/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Secuencia de Bases , ARN sin Sentido/genética
2.
Chembiochem ; 23(24): e202200423, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36354762

RESUMEN

When water interacts with porous rocks, its wetting and surface tension properties create air bubbles in large number. To probe their relevance as a setting for the emergence of life, we microfluidically created foams that were stabilized with lipids. A persistent non-equilibrium setting was provided by a thermal gradient. The foam's large surface area triggers capillary flows and wet-dry reactions that accumulate, aggregate and oligomerize RNA, offering a compelling habitat for RNA-based early life as it offers both wet and dry conditions in direct neighborhood. Lipids were screened to stabilize the foams. The prebiotically more probable myristic acid stabilized foams over many hours. The capillary flow created by the evaporation at the water-air interface provided an attractive force for molecule localization and selection for molecule size. For example, self-binding oligonucleotide sequences accumulated and formed micrometer-sized aggregates which were shuttled between gas bubbles. The wet-dry cycles at the foam bubble interfaces triggered a non-enzymatic RNA oligomerization from 2',3'-cyclic CMP and GMP which despite the small dry reaction volume was superior to the corresponding dry reaction. The found characteristics make heated foams an interesting, localized setting for early molecular evolution.


Asunto(s)
Prebióticos , ARN , Propiedades de Superficie , Agua/química , Lípidos
3.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33593911

RESUMEN

The central question in the origin of life is to understand how structure can emerge from randomness. The Eigen theory of replication states, for sequences that are copied one base at a time, that the replication fidelity has to surpass an error threshold to avoid that replicated specific sequences become random because of the incorporated replication errors [M. Eigen, Naturwissenschaften 58 (10), 465-523 (1971)]. Here, we showed that linking short oligomers from a random sequence pool in a templated ligation reaction reduced the sequence space of product strands. We started from 12-mer oligonucleotides with two bases in all possible combinations and triggered enzymatic ligation under temperature cycles. Surprisingly, we found the robust creation of long, highly structured sequences with low entropy. At the ligation site, complementary and alternating sequence patterns developed. However, between the ligation sites, we found either an A-rich or a T-rich sequence within a single oligonucleotide. Our modeling suggests that avoidance of hairpins was the likely cause for these two complementary sequence pools. What emerged was a network of complementary sequences that acted both as templates and substrates of the reaction. This self-selecting ligation reaction could be restarted by only a few majority sequences. The findings showed that replication by random templated ligation from a random sequence input will lead to a highly structured, long, and nonrandom sequence pool. This is a favorable starting point for a subsequent Darwinian evolution searching for higher catalytic functions in an RNA world scenario.


Asunto(s)
Evolución Molecular , Conformación de Ácido Nucleico , Oligonucleótidos/química , Origen de la Vida , Moldes Genéticos , ADN Polimerasa Dirigida por ADN/metabolismo
4.
Phys Rev Lett ; 125(4): 048104, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32794805

RESUMEN

The RNA world scenario posits replication by RNA polymerases. On early Earth, a geophysical setting is required to separate hybridized strands after their replication and to localize them against diffusion. We present a pointed heat source that drives exponential, RNA-catalyzed amplification of short RNA with high efficiency in a confined chamber. While shorter strands were periodically melted by laminar convection, the temperature gradient caused aggregated polymerase molecules to accumulate, protecting them from degradation in hot regions of the chamber. These findings demonstrate a size-selective pathway for autonomous RNA-based replication in natural nonequilibrium conditions.


Asunto(s)
Ecosistema , ARN/química , ARN/genética , Catálisis , ADN/química , ADN/genética , ADN/metabolismo , Replicación del ADN , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Planeta Tierra , Evolución Molecular , Calor , Biosíntesis de Proteínas/genética , ARN/metabolismo
5.
Life (Basel) ; 10(3)2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32110893

RESUMEN

Research on the origin of life is highly heterogeneous. After a peculiar historical development, it still includes strongly opposed views which potentially hinder progress. In the 1st Interdisciplinary Origin of Life Meeting, early-career researchers gathered to explore the commonalities between theories and approaches, critical divergence points, and expectations for the future. We find that even though classical approaches and theories-e.g. bottom-up and top-down, RNA world vs. metabolism-first-have been prevalent in origin of life research, they are ceasing to be mutually exclusive and they can and should feed integrating approaches. Here we focus on pressing questions and recent developments that bridge the classical disciplines and approaches, and highlight expectations for future endeavours in origin of life research.

6.
Chem Sci ; 10(22): 5807-5814, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31293769

RESUMEN

Continuous enzyme-free replication of oligonucleotides is central for open-ended evolution experiments that mimic the origin of life. Here, we studied a reaction system, whereby two 24mer DNA templates cross-catalyzed each other's synthesis from four 12mer DNA fragments, two of which were in situ activated with the condensing agent 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide (EDC). We circumvented the problem of product inhibition by melting the stable product duplexes for their reuse as templates in the following ligation step. The system reproduced itself through ligation/melting cycles and survived exponential dilution. We quantified EDC-induced side reactions in a detailed kinetic model. The model allowed us to analyze the effects of various reaction rates on the system's kinetics and confirmed maximal replication under the chosen conditions. The presented system enables us to study nonenzymatic open-ended evolution experiments starting from diverse sequence pools.

7.
Biophys J ; 114(8): 1908-1920, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29694868

RESUMEN

We have studied the adhesion state (also denoted by docking state) of lipid vesicles as induced by the divalent ions Ca2+ or Mg2+ at well-controlled ion concentration, lipid composition, and charge density. The bilayer structure and the interbilayer distance in the docking state were analyzed by small-angle x-ray scattering. A strong adhesion state was observed for DOPC:DOPS vesicles, indicating like-charge attraction resulting from ion correlations. The observed interbilayer separations of ∼1.6 nm agree quantitatively with the predictions of electrostatics in the strong coupling regime. Although this phenomenon was observed when mixing anionic and zwitterionic (or neutral) lipids, pure anionic membranes (DOPS) with highest charge density σ resulted in a direct phase transition to a multilamellar state, which must be accompanied by rupture and fusion of vesicles. To extend the structural assay toward protein-controlled docking and fusion, we have characterized reconstituted N-ethylmaleimide-sensitive factor attachment protein receptors in controlled proteoliposome suspensions by small-angle x-ray scattering.


Asunto(s)
Fusión de Membrana , Dispersión del Ángulo Pequeño , Liposomas Unilamelares/química , Difracción de Rayos X , Adhesividad , Modelos Moleculares , Liposomas Unilamelares/metabolismo
8.
Rev Sci Instrum ; 87(2): 025103, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26931887

RESUMEN

We demonstrate the use of a molybdenum-anode-based in-house small-angle X-ray scattering (SAXS) setup to study biological macromolecules in solution. Our system consists of a microfocus X-ray tube delivering a highly collimated flux of 2.5 × 10(6) photons/s at a beam size of 1.2 × 1.2 mm(2) at the collimation path exit and a maximum beam divergence of 0.16 mrad. The resulting observable scattering vectors q are in the range of 0.38 Å(-1) down to 0.009 Å(-1) in SAXS configuration and of 0.26 Å(-1) up to 5.7 Å(-1) in wide-angle X-ray scattering (WAXS) mode. To determine the capabilities of the instrument, we collected SAXS data on weakly scattering biological macromolecules including proteins and a nucleic acid sample with molecular weights varying from ∼12 to 69 kDa and concentrations of 1.5-24 mg/ml. The measured scattering data display a high signal-to-noise ratio up to q-values of ∼0.2 Å(-1) allowing for an accurate structural characterization of the samples. Moreover, the in-house source data are of sufficient quality to perform ab initio 3D structure reconstructions that are in excellent agreement with the available crystallographic structures. In addition, measurements for the detergent decyl-maltoside show that the setup can be used to determine the size, shape, and interactions (as characterized by the second virial coefficient) of detergent micelles. This demonstrates that the use of a Mo-anode based in-house source is sufficient to determine basic geometric parameters and 3D shapes of biomolecules and presents a viable alternative to valuable beam time at third generation synchrotron sources.


Asunto(s)
Modelos Teóricos , Molibdeno , Difracción de Rayos X/instrumentación , Difracción de Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...