Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Drug Dev Ind Pharm ; 50(4): 376-386, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38533688

RESUMEN

OBJECTIVE: The study evaluated physicochemical properties of eight different polymeric nanoparticles (NPs) and their interaction with lung barrier and their suitability for pulmonary drug delivery. METHODS: Eight physiochemically different NPs were fabricated from Poly lactic-co-glycolic acid (PLGA, PL) and Poly glycerol adipate-co-ω-pentadecalactone (PGA-co-PDL, PG) via emulsification-solvent evaporation. Pulmonary barrier integrity was investigated in vitro using Calu-3 under air-liquid interface. NPs internalization was investigated using a group of pharmacological inhibitors with subsequent microscopic visual confirmation. RESULTS: Eight NPs were successfully formulated from two polymers using emulsion-solvent evaporation; 200, 500 and 800 nm, negatively-charged and positively-charged. All different NPs did not alter tight junctions and PG NPs showed similar behavior to PL NPs, indicating its suitability for pulmonary drug delivery. Active endocytosis uptake mechanisms with physicochemical dependent manner were observed. In addition, NPs internalization and co-localization with lysosomes were visually confirmed indicating their vesicular transport. CONCLUSION: PG and PL NPs had shown no or low harmful effects on the barrier integrity, and with effective internalization and vesicular transport, thus, prospectively can be designed for pulmonary delivery applications.


Asunto(s)
Nanopartículas , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Poliglicólico/química , Ácido Láctico/química , Pulmón , Línea Celular , Nanopartículas/química , Solventes , Portadores de Fármacos/química
2.
Colloids Surf B Biointerfaces ; 229: 113466, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37515959

RESUMEN

Lung cancer is one of the most aggressive and deadliest health threats. There has been an increasing interest in non-coding RNA (ncRNA) recently, especially in the areas of carcinogenesis and tumour progression. However, ncRNA-directed therapies are still encountering obstacles on their way to the clinic. In the present article, we provide an overview on the potential of targeting ncRNA in the treatment of lung cancer. Then, we discuss the delivery challenges and recent approaches enabling the delivery of ncRNA-directed therapies to the lung cancer cells, where we illuminate some advanced technologies including chemically-modified oligonucleotides, nuclear targeting, and three-dimensional in vitro models. Furthermore, advanced non-viral delivery systems recruiting nanoparticles, biomimetic delivery systems, and extracellular vesicles are also highlighted. Lastly, the challenges limiting the clinical trials on the therapeutic targeting of ncRNAs in lung cancer and future directions to tackle them are explored.


Asunto(s)
Neoplasias Pulmonares , ARN no Traducido , Humanos , ARN no Traducido/genética , ARN no Traducido/uso terapéutico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamiento farmacológico , Carcinogénesis , Terapia Molecular Dirigida/métodos
3.
Data Brief ; 49: 109363, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37456109

RESUMEN

This data article collects and validates a multivariate dataset on personality traits, social, and cognitive predictors of the entrepreneurial intention of 276 students of three Omani universities. Administering a validated questionnaire, a pilot study was conducted by taking a sample of 60 responses to ensure the robustness of the survey scales. Following the pilot study, the final data were collected from 276 UG and PG level students in February 2021, which were first cleaned for missing, unengaged, and outlier responses before going ahead with statistical analyses. The data were also checked for common method bias by applying Cook's distance method which was followed by establishing the measurement model (ensuring model fitness, convergent and divergent validities) by running a CFA model in AMOS. The dataset from this data article would be of significant use for the researchers studying nascent and student entrepreneurship and Oman universities and the government in developing an entrepreneurship course curriculum.

4.
Nat Commun ; 14(1): 3377, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291107

RESUMEN

The benefits of large-scale genetic studies for healthcare of the populations studied are well documented, but these genetic studies have traditionally ignored people from some parts of the world, such as South Asia. Here we describe whole genome sequence (WGS) data from 4806 individuals recruited from the healthcare delivery systems of Pakistan, India and Bangladesh, combined with WGS from 927 individuals from isolated South Asian populations. We characterize population structure in South Asia and describe a genotyping array (SARGAM) and imputation reference panel that are optimized for South Asian genomes. We find evidence for high rates of reproductive isolation, endogamy and consanguinity that vary across the subcontinent and that lead to levels of rare homozygotes that reach 100 times that seen in outbred populations. Founder effects increase the power to associate functional variants with disease processes and make South Asia a uniquely powerful place for population-scale genetic studies.


Asunto(s)
Pueblo Asiatico , Efecto Fundador , Humanos , Pueblo Asiatico/genética , Bangladesh , Homocigoto , India , Pakistán , Personas del Sur de Asia
7.
Pharmaceutics ; 14(6)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35745810

RESUMEN

Pneumococcal disease remains a global burden, with current conjugated vaccines offering protection against the common serotype strains. However, there are over 100 serotype strains, and serotype replacement is now being observed, which reduces the effectiveness of the current vaccines. Pneumococcal surface protein A (PspA) has been investigated as a candidate for new serotype-independent pneumococcal vaccines, but requires adjuvants and/or delivery systems to improve protection. Polymeric nanoparticles (NPs) are biocompatible and, besides the antigen, can incorporate mucoadhesive and adjuvant substances such as chitosans, which improve antigen presentation at mucosal surfaces. This work aimed to define the optimal NP formulation to deliver PspA into the lungs and protect mice against lethal challenge. We prepared poly(glycerol-adipate-co-ω-pentadecalactone) (PGA-co-PDL) and poly(lactic-co-glycolic acid) (PLGA) NPs using an emulsion/solvent evaporation method, incorporating chitosan hydrochloride (HCl-CS) or carboxymethyl chitosan (CM-CS) as hybrid NPs with encapsulated or adsorbed PspA. We investigated the physicochemical properties of NPs, together with the PspA integrity and biological activity. Furthermore, their ability to activate dendritic cells in vitro was evaluated, followed by mucosal immunization targeting mouse lungs. PGA-co-PDL/HCl-CS (291 nm) or CM-CS (281 nm) NPs produced smaller sizes compared to PLGA/HCl-CS (310 nm) or CM-CS (299 nm) NPs. Moreover, NPs formulated with HCl-CS possessed a positive charge (PGA-co-PDL +17 mV, PLGA + 13 mV) compared to those formulated with CM-CS (PGA-co-PDL -20 mV, PLGA -40 mV). PspA released from NPs formulated with HCl-CS preserved the integrity and biological activity, but CM-CS affected PspA binding to lactoferrin and antibody recognition. PspA adsorbed in PGA-co-PDL/HCl-CS NPs stimulated CD80+ and CD86+ cells, but this was lower compared to when PspA was encapsulated in PLGA/HCl-CS NPs, which also stimulated CD40+ and MHC II (I-A/I-E)+ cells. Despite no differences in IgG being observed between immunized animals, PGA-co-PDL/HCl-CS/adsorbed-PspA protected 83% of mice after lethal pneumococcal challenge, while 100% of mice immunized with PLGA/HCl-CS/encapsulated-PspA were protected. Therefore, this formulation is a promising vaccine strategy, which has beneficial properties for mucosal immunization and could potentially provide serotype-independent protection.

8.
J Pak Med Assoc ; 72(5): 886-890, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35713050

RESUMEN

OBJECTIVE: To assess health-related quality of life in haemodialysis patients, and the impact of various factors in this regard. METHODS: The retrospective observational cross-sectional study was conducted at The Kidney Centre Post-Graduate Training Institute, Karachi, and comprised data from June to December 2019 of patients on maintenance haemodialysis. The health-related quality of life was assessed using the self-administered Urdu version of the Kidney Disease Quality of Life-Short Form version 1.3. Data was analysed using SPSS 21. RESULTS: Of the 150 questionnaires distributed, 110(73.3%) were received fully completed. There were 64(58.2%) males, 46(41.8%) were females, 90(81.8%) were under <60 years age, 76(69%) were married, 54(49.1%) had income up to PKR50,000, 64(58.2%) had received education up to secondary school, and 56(50.9%) had been on haemodialysis for <5 years. The overall health-related quality of life mean score was 52.0±11.7, and it had no significant association with age, gender, haemodialysis duration, marital status, education level, and income of the subjects (p>0.05). CONCLUSIONS: The health-related quality of life in haemodialysis patients was not found to have significant association with age, gender, haemodialysis duration, marital status, education level, and income.


Asunto(s)
Enfermedades Renales , Fallo Renal Crónico , Estudios Transversales , Femenino , Humanos , Enfermedades Renales/complicaciones , Fallo Renal Crónico/complicaciones , Fallo Renal Crónico/epidemiología , Fallo Renal Crónico/terapia , Masculino , Estado Civil , Persona de Mediana Edad , Pakistán/epidemiología , Calidad de Vida , Diálisis Renal , Estudios Retrospectivos , Encuestas y Cuestionarios
9.
PLoS Genet ; 18(4): e1010093, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35381001

RESUMEN

Novel drug targets for sustained reduction in body mass index (BMI) are needed to curb the epidemic of obesity, which affects 650 million individuals worldwide and is a causal driver of cardiovascular and metabolic disease and mortality. Previous studies reported that the Arg95Ter nonsense variant of GPR151, an orphan G protein-coupled receptor, is associated with reduced BMI and reduced risk of Type 2 Diabetes (T2D). Here, we further investigate GPR151 with the Pakistan Genome Resource (PGR), which is one of the largest exome biobanks of human homozygous loss-of-function carriers (knockouts) in the world. Among PGR participants, we identify eleven GPR151 putative loss-of-function (plof) variants, three of which are present at homozygosity (Arg95Ter, Tyr99Ter, and Phe175LeufsTer7), with a cumulative allele frequency of 2.2%. We confirm these alleles in vitro as loss-of-function. We test if GPR151 plof is associated with BMI, T2D, or other metabolic traits and find that GPR151 deficiency in complete human knockouts is not associated with clinically significant differences in these traits. Relative to Gpr151+/+ mice, Gpr151-/- animals exhibit no difference in body weight on normal chow and higher body weight on a high-fat diet. Together, our findings indicate that GPR151 antagonism is not a compelling therapeutic approach to treatment of obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Receptores Acoplados a Proteínas G/metabolismo , Animales , Índice de Masa Corporal , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Exoma , Frecuencia de los Genes , Humanos , Ratones , Obesidad/genética
11.
Pharmaceutics ; 14(3)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35336035

RESUMEN

The treatment of breast cancer requires long chemotherapy management, which is accompanied by severe side effects. Localized delivery of anticancer drugs helps to increase the drug concentration at the site of action and overcome such a problem. In the present study, chitosan hydrogel was prepared for local delivery of 5-Fluorouracil. The in vitro release behavior was investigated and the anticancer activity was evaluated against MCF-7 cells using MTT assay. The in vivo studies were investigated via intra-tumoral injection of a 5-FU loaded hydrogel into breast cancer of female rats. The results indicated that the modified hydrogel has excellent physicochemical properties with a sustained in vitro release profile matching a zero-order kinetic for one month. In addition, the hydrogel showed superior inhibition of cell viability compared with the untreated control group. Moreover, the in vivo studies resulted in antitumor activity with minor side effects. The tumor volume and level of tumor markers in blood were inhibited significantly by applying the hydrogel compared with the untreated control group. In conclusion, the designed injectable hydrogels are potential drug delivery systems for the treatment of breast cancer with a controlled drug release profile, which could be suitable for decreasing the side effects of chemotherapy agents.

12.
Pharmacy (Basel) ; 10(1)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35202067

RESUMEN

The emerging landscape of nanomedicine includes a wide variety of active pharmaceutical ingredients and drug formulations. Their design provides nanomedicines with unique features leading to improved pharmacokinetics and pharmacodynamics. They are manufactured using conventional or biotechnological manufacturing processes. Their physical characteristics are vastly different from traditional small-molecule drugs. Pharmacists are important members of the multi-disciplinary team of scientists involved in their development and clinical application. Consequently, their training should lead to an understanding of the complexities associated with the production and evaluation of nanomedicines. Therefore, student pharmacists, post-doctoral researchers, and trainees should be given more exposure to this rapidly evolving class of therapeutics. This commentary will provide an overview of nanomedicine education within the selection of pharmacy programs globally, discuss the current regulatory challenges, and describe different approaches to incorporate nanomedicine science in pharmacy programs around the world.

13.
Life Sci ; 295: 120403, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35176277

RESUMEN

Cetuximab (CTX) is known to have cytotoxic effects on several human cancer cells in vitro; however, as CTX is poorly water soluble, there is a need for improved formulations can reach cancer cells at high concentrations with low side effects. We developed (PEG-4000) polymeric nanoparticles (PEGNPs) loaded with CTX and evaluated their in vitro cytotoxicity and anticancer properties against human lung (A549) and breast (MCF-7) cancer cells. CTX-PEGNPs were formulated using the solvent evaporation technique, and their morphological properties were evaluated. Further, the effects of CTX-PEGNPs on cell viability using the MTT assay and perform gene expression analysis, DNA fragmentation measurements, and the comet assay. CTX-PEGNP showed uniformly dispersed NPs of nano-size range (253.7 ± 0.3 nm), and low polydispersity index (0.16) indicating the stability and uniformity of NPs. Further, the zeta potential of the preparations was -17.0 ± 1.8 mv. DSC and FTIR confirmed the entrapping of CTX in NPs. The results showed IC50 values of 2.26 µg/mL and 1.83 µg/mL for free CTX and CTX-PEGNPs on the A549 cancer cell line, respectively. Moreover, CTX-PEGNPs had a lower IC50 of 1.12 µg/mL in MCF-7 cells than that of free CTX (2.28 µg/mL). The expression levels of p21 and stathmin-1 were significantly decreased in both cell lines treated with CTX-PEGNPs compared to CTX alone. The CTX-PEGNP-treated cells also showed increased DNA fragmentation rates in both cancer cell lines compared with CTX alone. The results indicated that CTX-PEGNP was an improved formulation than CTX alone to induce apoptosis and DNA damage and inhibit cell proliferation through the downregulation of P21 and stathmin-1 expression.


Asunto(s)
Cetuximab/farmacología , Sistemas de Liberación de Medicamentos/métodos , Polietilenglicoles/farmacología , Células A549 , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cetuximab/administración & dosificación , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Portadores de Fármacos/farmacología , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células MCF-7 , Nanopartículas/química , Polímeros , Estatmina/efectos de los fármacos , Estatmina/metabolismo
14.
Pharmaceutics, v. 14, n. 6, 1238, jun. 2022
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4393

RESUMEN

Pneumococcal disease remains a global burden, with current conjugated vaccines offering protection against the common serotype strains. However, there are over 100 serotype strains, and serotype replacement is now being observed, which reduces the effectiveness of the current vaccines. Pneumococcal surface protein A (PspA) has been investigated as a candidate for new serotype-independent pneumococcal vaccines, but requires adjuvants and/or delivery systems to improve protection. Polymeric nanoparticles (NPs) are biocompatible and, besides the antigen, can incorporate mucoadhesive and adjuvant substances such as chitosans, which improve antigen presentation at mucosal surfaces. This work aimed to define the optimal NP formulation to deliver PspA into the lungs and protect mice against lethal challenge. We prepared poly(glycerol-adipate-co-ω-pentadecalactone) (PGA-co-PDL) and poly(lactic-co-glycolic acid) (PLGA) NPs using an emulsion/solvent evaporation method, incorporating chitosan hydrochloride (HCl-CS) or carboxymethyl chitosan (CM-CS) as hybrid NPs with encapsulated or adsorbed PspA. We investigated the physicochemical properties of NPs, together with the PspA integrity and biological activity. Furthermore, their ability to activate dendritic cells in vitro was evaluated, followed by mucosal immunization targeting mouse lungs. PGA-co-PDL/HCl-CS (291 nm) or CM-CS (281 nm) NPs produced smaller sizes compared to PLGA/HCl-CS (310 nm) or CM-CS (299 nm) NPs. Moreover, NPs formulated with HCl-CS possessed a positive charge (PGA-co-PDL +17 mV, PLGA + 13 mV) compared to those formulated with CM-CS (PGA-co-PDL −20 mV, PLGA −40 mV). PspA released from NPs formulated with HCl-CS preserved the integrity and biological activity, but CM-CS affected PspA binding to lactoferrin and antibody recognition. PspA adsorbed in PGA-co-PDL/HCl-CS NPs stimulated CD80+ and CD86+ cells, but this was lower compared to when PspA was encapsulated in PLGA/HCl-CS NPs, which also stimulated CD40+ and MHC II (I-A/I-E)+ cells. Despite no differences in IgG being observed between immunized animals, PGA-co-PDL/HCl-CS/adsorbed-PspA protected 83% of mice after lethal pneumococcal challenge, while 100% of mice immunized with PLGA/HCl-CS/encapsulated-PspA were protected. Therefore, this formulation is a promising vaccine strategy, which has beneficial properties for mucosal immunization and could potentially provide serotype-independent protection.

15.
BMC Med ; 19(1): 232, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34503513

RESUMEN

BACKGROUND: Genetic, lifestyle, and environmental factors can lead to perturbations in circulating lipid levels and increase the risk of cardiovascular and metabolic diseases. However, how changes in individual lipid species contribute to disease risk is often unclear. Moreover, little is known about the role of lipids on cardiovascular disease in Pakistan, a population historically underrepresented in cardiovascular studies. METHODS: We characterised the genetic architecture of the human blood lipidome in 5662 hospital controls from the Pakistan Risk of Myocardial Infarction Study (PROMIS) and 13,814 healthy British blood donors from the INTERVAL study. We applied a candidate causal gene prioritisation tool to link the genetic variants associated with each lipid to the most likely causal genes, and Gaussian Graphical Modelling network analysis to identify and illustrate relationships between lipids and genetic loci. RESULTS: We identified 253 genetic associations with 181 lipids measured using direct infusion high-resolution mass spectrometry in PROMIS, and 502 genetic associations with 244 lipids in INTERVAL. Our analyses revealed new biological insights at genetic loci associated with cardiometabolic diseases, including novel lipid associations at the LPL, MBOAT7, LIPC, APOE-C1-C2-C4, SGPP1, and SPTLC3 loci. CONCLUSIONS: Our findings, generated using a distinctive lipidomics platform in an understudied South Asian population, strengthen and expand the knowledge base of the genetic determinants of lipids and their association with cardiometabolic disease-related loci.


Asunto(s)
Estudio de Asociación del Genoma Completo , Infarto del Miocardio , Pueblo Asiatico/genética , Predisposición Genética a la Enfermedad , Humanos , Lípidos , Polimorfismo de Nucleótido Simple , Población Blanca
16.
Molecules ; 26(8)2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920728

RESUMEN

The aim of the present study was to assess the short-term effects of Thymoquinone (TQ) on oxidative stress, glycaemic control, and renal functions in diabetic rats. DM was induced in groups II and III with a single dose of streptozotocin (STZ), while group I received no medication (control). The rats in groups I and II were then given distilled water, while the rats in group III were given TQ at a dose of 50 mg/kg body weight/day for 4 weeks. Lipid peroxidase, nitric oxide (NO), total antioxidant capacity (TAC), glycated haemoglobin (HbA1c), lipid profiles, and renal function were assessed. Moreover, the renal tissues were used for histopathological examination. STZ increased the levels of HbA1c, lipid peroxidase, NO, and creatinine in STZ-induced diabetic rats in comparison to control rats. TAC was lower in STZ-induced diabetic rats than in the control group. Furthermore, rats treated with TQ exhibited significantly lower levels of HbA1c, lipid peroxidase, and NO than did untreated diabetic rats. TAC was higher in diabetic rats treated with TQ than in untreated diabetic rats. The histopathological results showed that treatment with TQ greatly attenuated the effect of STZ-induced diabetic nephropathy. TQ effectively adjusts glycaemic control and reduces oxidative stress in STZ-induced diabetic rats without significant damaging effects on the renal function.


Asunto(s)
Benzoquinonas/farmacología , Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Animales , Antioxidantes/farmacología , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/patología , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Humanos , Hipoglucemia/sangre , Hipoglucemia/tratamiento farmacológico , Hipoglucemia/patología , Riñón/efectos de los fármacos , Riñón/patología , Estrés Oxidativo/efectos de los fármacos , Ratas
17.
Pharmaceutics ; 13(4)2021 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-33801614

RESUMEN

The development of vaccines is one of the most significant medical accomplishments which has helped to eradicate a large number of diseases. It has undergone an evolutionary process from live attenuated pathogen vaccine to killed whole organisms or inactivated toxins (toxoids), each of them having its own advantages and disadvantages. The crucial parameters in vaccination are the generation of memory response and protection against infection, while an important aspect is the effective delivery of antigen in an intelligent manner to evoke a robust immune response. In this regard, nanotechnology is greatly contributing to developing efficient vaccine adjuvants and delivery systems. These can protect the encapsulated antigen from the host's in-vivo environment and releasing it in a sustained manner to induce a long-lasting immunostimulatory effect. In view of this, the present review article summarizes nanoscale-based adjuvants and delivery vehicles such as viral vectors, virus-like particles and virosomes; non-viral vectors namely nanoemulsions, lipid nanocarriers, biodegradable and non-degradable nanoparticles, calcium phosphate nanoparticles, colloidally stable nanoparticles, proteosomes; and pattern recognition receptors covering c-type lectin receptors and toll-like receptors.

18.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670611

RESUMEN

In this study, PGA-co-PDL nanoparticles (NPs) encapsulating model antigen, bovine serum albumin (BSA), were prepared via double emulsion solvent evaporation. In addition, chitosan hydrochloride (CHL) was incorporated into the external phase of the emulsion solvent method, which resulted in surface adsorption onto the NPs to form hybrid cationic CHL NPs. The BSA encapsulated CHL NPs were encompassed into nanocomposite microcarriers (NCMPs) composed of l-leucine to produce CHL NPs/NCMPs via spray drying. The CHL NPs/NCMPs were investigated for in vitro aerosolization, release study, cell viability and uptake, and stability of protein structure. Hybrid cationic CHL NPs (CHL: 10 mg/mL) of particle size (480.2 ± 32.2 nm), charge (+14.2 ± 0.72 mV), and BSA loading (7.28 ± 1.3 µg/mg) were produced. The adsorption pattern was determined to follow the Freundlich model. Aerosolization of CHL NPs/NCMPs indicated fine particle fraction (FPF: 46.79 ± 11.21%) and mass median aerodynamic diameter (MMAD: 1.49 ± 0.29 µm). The BSA α-helical structure was maintained, after release from the CHL NPs/NCMPs, as indicated by circular dichroism. Furthermore, dendritic cells (DCs) and A549 cells showed good viability (≥70% at 2.5 mg/mL after 4-24 h exposure, respectively). Confocal microscopy and flow cytometry data showed hybrid cationic CHL NPs were successfully taken up by DCs within 1 h of incubation. The upregulation of CD40, CD86, and MHC-II cell surface markers indicated that the DCs were successfully activated by the hybrid cationic CHL NPs. These results suggest that the CHL NPs/NCMPs technology platform could potentially be used for the delivery of proteins to the lungs for immunostimulatory applications such as vaccines.

19.
Int J Pharm ; 599: 120407, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33675930

RESUMEN

Polymeric nanoparticles (NPs) are recognized as potential delivery vehicles for vaccines. PLGA is a biocompatible polymer synonymous with polymeric NPs, which can be coated with other polymers such as chitosan that has intrinsic adjuvant properties as well as mucoadhesive properties. Numerous modifications and variations exist for PLGA and chitosan, which can influence the NP characteristics and the resulting immunogenicity. The current study investigated variations for making chitosan coated PLGA NPs incorporating recombinant pneumococcal surface protein A from family 2, clade 4 (PspA4Pro) antigen as a vaccine targeting the vast majority of pneumococcal strains and determine the effect of the polymers on particle size, surface charge, and surface marker upregulation on a dendritic cell (DC) line in vitro. PLGA variations tested with the ester-terminal group had the greatest detriment for prospective vaccine use, due to the lowest PspA4Pro adsorption and induction of CD40 and CD86 cell surface markers on DCs. The negatively charged chitosans exhibited the lowest surface marker expressions, similar to the uncoated NP, supporting the commonly accepted notion that positive surface charge augments immunogenic effects of the NPs. However, the study indicated that NPs made from PLGA with an acid terminated group, and chitosan HCl salt, exhibit particle characteristics, antigen adsorption efficiency and immunogenicity, which could be most suitable as a vaccine formulation.


Asunto(s)
Quitosano , Nanopartículas , Antígenos de Superficie , Proteínas de la Membrana , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Polímeros , Estudios Prospectivos
20.
Int J Pharm, v. 599, 120407, abr. 2021
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3628

RESUMEN

Polymeric nanoparticles (NPs) are recognized as potential delivery vehicles for vaccines. PLGA is a biocompatible polymer synonymous with polymeric NPs, which can be coated with other polymers such as chitosan that has intrinsic adjuvant properties as well as mucoadhesive properties. Numerous modifications and variations exist for PLGA and chitosan, which can influence the NP characteristics and the resulting immunogenicity. The current study investigated variations for making chitosan coated PLGA NPs incorporating recombinant pneumococcal surface protein A from family 2, clade 4 (PspA4Pro) antigen as a vaccine targeting the vast majority of pneumococcal strains and determine the effect of the polymers on particle size, surface charge, and surface marker upregulation on a dendritic cell (DC) line in vitro. PLGA variations tested with the ester-terminal group had the greatest detriment for prospective vaccine use, due to the lowest PspA4Pro adsorption and induction of CD40 and CD86 cell surface markers on DCs. The negatively charged chitosans exhibited the lowest surface marker expressions, similar to the uncoated NP, supporting the commonly accepted notion that positive surface charge augments immunogenic effects of the NPs. However, the study indicated that NPs made from PLGA with an acid terminated group, and chitosan HCl salt, exhibit particle characteristics, antigen adsorption efficiency and immunogenicity, which could be most suitable as a vaccine formulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...