Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Clin Proteomics ; 21(1): 34, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762513

RESUMEN

BACKGROUND: The early identification of patients at high-risk for end-stage renal disease (ESRD) is essential for providing optimal care and implementing targeted prevention strategies. While the Kidney Failure Risk Equation (KFRE) offers a more accurate prediction of ESRD risk compared to static eGFR-based thresholds, it does not provide insights into the patient-specific biological mechanisms that drive ESRD. This study focused on evaluating the effectiveness of KFRE in a UK-based advanced chronic kidney disease (CKD) cohort and investigating whether the integration of a proteomic signature could enhance 5-year ESRD prediction. METHODS: Using the Salford Kidney Study biobank, a UK-based prospective cohort of over 3000 non-dialysis CKD patients, 433 patients met our inclusion criteria: a minimum of four eGFR measurements over a two-year period and a linear eGFR trajectory. Plasma samples were obtained and analysed for novel proteomic signals using SWATH-Mass-Spectrometry. The 4-variable UK-calibrated KFRE was calculated for each patient based on their baseline clinical characteristics. Boruta machine learning algorithm was used for the selection of proteins most contributing to differentiation between patient groups. Logistic regression was employed for estimation of ESRD prediction by (1) proteomic features; (2) KFRE; and (3) proteomic features alongside KFRE. RESULTS: SWATH maps with 943 quantified proteins were generated and investigated in tandem with available clinical data to identify potential progression biomarkers. We identified a set of proteins (SPTA1, MYL6 and C6) that, when used alongside the 4-variable UK-KFRE, improved the prediction of 5-year risk of ESRD (AUC = 0.75 vs AUC = 0.70). Functional enrichment analysis revealed Rho GTPases and regulation of the actin cytoskeleton pathways to be statistically significant, inferring their role in kidney function and the pathogenesis of renal disease. CONCLUSIONS: Proteins SPTA1, MYL6 and C6, when used alongside the 4-variable UK-KFRE achieve an improved performance when predicting a 5-year risk of ESRD. Specific pathways implicated in the pathogenesis of podocyte dysfunction were also identified, which could serve as potential therapeutic targets. The findings of our study carry implications for comprehending the involvement of the Rho family GTPases in the pathophysiology of kidney disease, advancing our understanding of the proteomic factors influencing susceptibility to renal damage.

2.
Clin Kidney J ; 17(5): sfae119, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38766272

RESUMEN

Genome editing technologies, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas in particular, have revolutionized the field of genetic engineering, providing promising avenues for treating various genetic diseases. Chronic kidney disease (CKD), a significant health concern affecting millions of individuals worldwide, can arise from either monogenic or polygenic mutations. With recent advancements in genomic sequencing, valuable insights into disease-causing mutations can be obtained, allowing for the development of new treatments for these genetic disorders. CRISPR-based treatments have emerged as potential therapies, especially for monogenic diseases, offering the ability to correct mutations and eliminate disease phenotypes. Innovations in genome editing have led to enhanced efficiency, specificity and ease of use, surpassing earlier editing tools such as zinc-finger nucleases and transcription activator-like effector nucleases (TALENs). Two prominent advancements in CRISPR-based gene editing are prime editing and base editing. Prime editing allows precise and efficient genome modifications without inducing double-stranded DNA breaks (DSBs), while base editing enables targeted changes to individual nucleotides in both RNA and DNA, promising disease correction in the absence of DSBs. These technologies have the potential to treat genetic kidney diseases through specific correction of disease-causing mutations, such as somatic mutations in PKD1 and PKD2 for polycystic kidney disease; NPHS1, NPHS2 and TRPC6 for focal segmental glomerulosclerosis; COL4A3, COL4A4 and COL4A5 for Alport syndrome; SLC3A1 and SLC7A9 for cystinuria and even VHL for renal cell carcinoma. Apart from editing the DNA sequence, CRISPR-mediated epigenome editing offers a cost-effective method for targeted treatment providing new avenues for therapeutic development, given that epigenetic modifications are associated with the development of various kidney disorders. However, there are challenges to overcome, including developing efficient delivery methods, improving safety and reducing off-target effects. Efforts to improve CRISPR-Cas technologies involve optimizing delivery vectors, employing viral and non-viral approaches and minimizing immunogenicity. With research in animal models providing promising results in rescuing the expression of wild-type podocin in mouse models of nephrotic syndrome and successful clinical trials in the early stages of various disorders, including cancer immunotherapy, there is hope for successful translation of genome editing to kidney diseases.

3.
NPJ Syst Biol Appl ; 10(1): 28, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38459044

RESUMEN

Chronic kidney diseases (CKD) have genetic associations with kidney function. Univariate genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with estimated glomerular filtration rate (eGFR) and blood urea nitrogen (BUN), two complementary kidney function markers. However, it is unknown whether additional SNPs for kidney function can be identified by multivariate statistical analysis. To address this, we applied canonical correlation analysis (CCA), a multivariate method, to two individual-level CKD genotype datasets, and metaCCA to two published GWAS summary statistics datasets. We identified SNPs previously associated with kidney function by published univariate GWASs with high replication rates, validating the metaCCA method. We then extended discovery and identified previously unreported lead SNPs for both kidney function markers, jointly. These showed expression quantitative trait loci (eQTL) colocalisation with genes having significant differential expression between CKD and healthy individuals. Several of these identified lead missense SNPs were predicted to have a functional impact, including in SLC14A2. We also identified previously unreported lead SNPs that showed significant correlation with both kidney function markers, jointly, in the European ancestry CKDGen, National Unified Renal Translational Research Enterprise (NURTuRE)-CKD and Salford Kidney Study (SKS) datasets. Of these, rs3094060 colocalised with FLOT1 gene expression and was significantly more common in CKD cases in both NURTURE-CKD and SKS, than in the general population. Overall, by using multivariate analysis by CCA, we identified additional SNPs and genes for both kidney function and CKD, that can be prioritised for further CKD analyses.


Asunto(s)
Estudio de Asociación del Genoma Completo , Insuficiencia Renal Crónica , Humanos , Estudio de Asociación del Genoma Completo/métodos , Análisis de Correlación Canónica , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/epidemiología , Riñón , Sitios de Carácter Cuantitativo/genética
5.
J Endocrinol ; 261(3)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552310

RESUMEN

Diabetic nephropathy (DN) is one of the most frequent complications of diabetes. Early stages of DN are associated with hyperinsulinemia and progressive insulin resistance in insulin-sensitive cells, including podocytes. The diabetic environment induces pathological changes, especially in podocyte bioenergetics, which is tightly linked with mitochondrial dynamics. The regulatory role of insulin in mitochondrial morphology in podocytes has not been fully elucidated. Therefore, the main goal of the present study was to investigate effects of insulin on the regulation of mitochondrial dynamics and bioenergetics in human podocytes. Biochemical analyses were performed to assess oxidative phosphorylation efficiency by measuring the oxygen consumption rate (OCR) and glycolysis by measuring the extracellular acidification rate (ECAR). mRNA and protein expression were determined by real-time polymerase chain reaction and Western blot. The intracellular mitochondrial network was visualized by MitoTracker staining. All calculations were conducted using CellProfiler software. Short-term insulin exposure exerted inhibitory effects on various parameters of oxidative respiration and adenosine triphosphate production, and glycolysis flux was elevated. After a longer time of treating cells with insulin, an increase in mitochondrial size was observed, accompanied by a reduction of expression of the mitochondrial fission markers DRP1 and FIS1 and an increase in mitophagy. Overall, we identified a previously unknown role for insulin in the regulation of oxidative respiration and glycolysis and elucidated mitochondrial dynamics in human podocytes. The present results emphasize the importance of the duration of insulin stimulation for its metabolic and molecular effects, which should be considered in clinical and experimental studies of DN.


Asunto(s)
Metabolismo Energético , Glucólisis , Insulina , Mitocondrias , Dinámicas Mitocondriales , Podocitos , Podocitos/metabolismo , Podocitos/efectos de los fármacos , Humanos , Dinámicas Mitocondriales/efectos de los fármacos , Insulina/metabolismo , Insulina/farmacología , Metabolismo Energético/efectos de los fármacos , Glucólisis/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Dinaminas/metabolismo , Dinaminas/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Fosforilación Oxidativa/efectos de los fármacos , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Mitofagia/efectos de los fármacos , Línea Celular
6.
Physiol Rep ; 12(3): e15932, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38307723

RESUMEN

As the molecular mechanism of nephrotic syndrome remains largely undiscovered, patients continue to be exposed to the pros and cons of uniform glucocorticoid treatment. We explored whether the exposure of in vitro-cultivated podocytes to sera from children with steroid-sensitive or steroid-resistant nephrotic syndrome induces differences in gene expression profiles, which could help to elucidate the pathogenesis of the steroid response. Human immortalized podocytes were cultivated with patient sera for 3 days. After cell lysis, RNA extraction, 3'-mRNA libraries were prepared and sequenced. There were 34 significantly upregulated and 14 downregulated genes (fold difference <0.5 and >2.0, respectively, and false discovery rate-corrected p < 0.05) and 22 significantly upregulated and 6 downregulated pathways (false discovery rate-corrected p < 0.01) in the steroid-sensitive (n = 9) versus steroid-resistant group (n = 4). The observed pathways included upregulated redox reactions, DNA repair, mitosis, protein translation and downregulated cholesterol biosynthesis. Sera from children with nephrotic syndrome induce disease subtype-specific transcriptome changes in human podocytes in vitro. However, further exploration of a larger cohort is needed to verify whether clinically distinct types of nephrotic syndrome or disease activity may be differentiated by specific transcriptomic profiles and whether this information may help to elucidate the pathogenesis of the steroid response.


Asunto(s)
Síndrome Nefrótico , Podocitos , Niño , Humanos , Síndrome Nefrótico/genética , Podocitos/metabolismo , Transcriptoma , Glucocorticoides/farmacología , Esteroides/metabolismo
7.
Kidney Int ; 105(4): 744-758, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37995908

RESUMEN

Podocin is a key membrane scaffolding protein of the kidney podocyte essential for intact glomerular filtration. Mutations in NPHS2, the podocin-encoding gene, represent the commonest form of inherited nephrotic syndrome (NS), with early, intractable kidney failure. The most frequent podocin gene mutation in European children is R138Q, causing retention of the misfolded protein in the endoplasmic reticulum. Here, we provide evidence that podocin R138Q (but not wild-type podocin) complexes with the intermediate filament protein keratin 8 (K8) thereby preventing its correct trafficking to the plasma membrane. We have also identified a small molecule (c407), a compound that corrects the Cystic Fibrosis Transmembrane Conductance Regulator protein defect, that interrupts this complex and rescues mutant protein mistrafficking. This results in both the correct localization of podocin at the plasma membrane and functional rescue in both human patient R138Q mutant podocyte cell lines, and in a mouse inducible knock-in model of the R138Q mutation. Importantly, complete rescue of proteinuria and histological changes was seen when c407 was administered both via osmotic minipumps or delivered orally prior to induction of disease or crucially via osmotic minipump two weeks after disease induction. Thus, our data constitute a therapeutic option for patients with NS bearing a podocin mutation, with implications for other misfolding protein disorders. Further studies are necessary to confirm our findings.


Asunto(s)
Síndrome Nefrótico , Animales , Niño , Humanos , Ratones , Péptidos y Proteínas de Señalización Intracelular/genética , Queratina-8/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/genética , Mutación , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/genética , Síndrome Nefrótico/patología
8.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37958836

RESUMEN

Fabry disease is a lysosomal disease characterized by globotriaosylceramide (Gb3) accumulation. It may coexist with diabetes mellitus and both cause potentially lethal kidney end-organ damage. However, there is little information on their interaction with kidney disease. We have addressed the interaction between Fabry disease and diabetes in data mining of human kidney transcriptomics databases and in Fabry (Gla-/-) and wild type mice with or without streptozotocin-induced diabetes. Data mining was consistent with differential expression of genes encoding enzymes from the Gb3 metabolic pathway in human diabetic kidney disease, including upregulation of UGCG, the gene encoding the upstream and rate-limiting enzyme glucosyl ceramide synthase. Diabetic Fabry mice displayed the most severe kidney infiltration by F4/80+ macrophages, and a lower kidney expression of kidney protective genes (Pgc1α and Tfeb) than diabetic wild type mice, without a further increase in kidney fibrosis. Moreover, only diabetic Fabry mice developed kidney insufficiency and these mice with kidney insufficiency had a high expression of Ugcg. In conclusion, we found evidence of interaction between diabetes and Fabry disease that may increase the severity of the kidney phenotype through modulation of the Gb3 synthesis pathway and downregulation of kidney protective genes.


Asunto(s)
Diabetes Mellitus , Enfermedad de Fabry , Enfermedades Renales , Insuficiencia Renal , Humanos , Ratones , Animales , Enfermedad de Fabry/metabolismo , Factores Protectores , Riñón/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Insuficiencia Renal/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Trihexosilceramidas/metabolismo , alfa-Galactosidasa/genética
9.
Med ; 4(11): 761-777.e8, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37863058

RESUMEN

BACKGROUND: Shiga toxin (Stx)-producing Escherichia coli hemolytic uremic syndrome (STEC-HUS) is the leading cause of acute kidney injury in children, with an associated mortality of up to 5%. The mechanisms underlying STEC-HUS and why the glomerular microvasculature is so susceptible to injury following systemic Stx infection are unclear. METHODS: Transgenic mice were engineered to express the Stx receptor (Gb3) exclusively in their kidney podocytes (Pod-Gb3) and challenged with systemic Stx. Human glomerular cell models and kidney biopsies from patients with STEC-HUS were also studied. FINDINGS: Stx-challenged Pod-Gb3 mice developed STEC-HUS. This was mediated by a reduction in podocyte vascular endothelial growth factor A (VEGF-A), which led to loss of glomerular endothelial cell (GEnC) glycocalyx, a reduction in GEnC inhibitory complement factor H binding, and local activation of the complement pathway. Early therapeutic inhibition of the terminal complement pathway with a C5 inhibitor rescued this podocyte-driven, Stx-induced HUS phenotype. CONCLUSIONS: This study potentially explains why systemic Stx exposure targets the glomerulus and supports the early use of terminal complement pathway inhibition in this devastating disease. FUNDING: This work was supported by the UK Medical Research Council (MRC) (grant nos. G0901987 and MR/K010492/1) and Kidney Research UK (grant nos. TF_007_20151127, RP42/2012, and SP/FSGS1/2013). The Mary Lyon Center is part of the MRC Harwell Institute and is funded by the MRC (A410).


Asunto(s)
Infecciones por Escherichia coli , Síndrome Hemolítico-Urémico , Enfermedades Renales , Podocitos , Escherichia coli Shiga-Toxigénica , Niño , Humanos , Ratones , Animales , Podocitos/metabolismo , Podocitos/patología , Toxina Shiga/genética , Toxina Shiga/metabolismo , Toxina Shiga/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/uso terapéutico , Infecciones por Escherichia coli/complicaciones , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/metabolismo , Síndrome Hemolítico-Urémico/tratamiento farmacológico , Síndrome Hemolítico-Urémico/metabolismo , Síndrome Hemolítico-Urémico/patología , Escherichia coli Shiga-Toxigénica/metabolismo , Activación de Complemento , Enfermedades Renales/patología
10.
Sci Transl Med ; 15(708): eabc8226, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556557

RESUMEN

Gene therapy for kidney diseases has proven challenging. Adeno-associated virus (AAV) is used as a vector for gene therapy targeting other organs, with particular success demonstrated in monogenic diseases. We aimed to establish gene therapy for the kidney by targeting a monogenic disease of the kidney podocyte. The most common cause of childhood genetic nephrotic syndrome is mutations in the podocyte gene NPHS2, encoding podocin. We used AAV-based gene therapy to rescue this genetic defect in human and mouse models of disease. In vitro transduction studies identified the AAV-LK03 serotype as a highly efficient transducer of human podocytes. AAV-LK03-mediated transduction of podocin in mutant human podocytes resulted in functional rescue in vitro, and AAV 2/9-mediated gene transfer in both the inducible podocin knockout and knock-in mouse models resulted in successful amelioration of kidney disease. A prophylactic approach of AAV 2/9 gene transfer before induction of disease in conditional knockout mice demonstrated improvements in albuminuria, plasma creatinine, plasma urea, plasma cholesterol, histological changes, and long-term survival. A therapeutic approach of AAV 2/9 gene transfer 2 weeks after disease induction in proteinuric conditional knock-in mice demonstrated improvement in urinary albuminuria at days 42 and 56 after disease induction, with corresponding improvements in plasma albumin. Therefore, we have demonstrated successful AAV-mediated gene rescue in a monogenic renal disease and established the podocyte as a tractable target for gene therapy approaches.


Asunto(s)
Enfermedades Renales , Síndrome Nefrótico , Ratones , Humanos , Animales , Síndrome Nefrótico/genética , Síndrome Nefrótico/terapia , Dependovirus/genética , Albuminuria , Modelos Genéticos , Terapia Genética/métodos , Modelos Animales de Enfermedad , Ratones Noqueados , Vectores Genéticos
11.
J Cell Physiol ; 238(8): 1921-1936, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37269459

RESUMEN

Podocytes are crucially involved in blood filtration in the glomerulus. Their proper function relies on efficient insulin responsiveness. The insulin resistance of podocytes, defined as a reduction of cell sensitivity to this hormone, is the earliest pathomechanism of microalbuminuria that is observed in metabolic syndrome and diabetic nephropathy. In many tissues, this alteration is mediated by the phosphate homeostasis-controlling enzyme nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1). By binding to the insulin receptor (IR), NPP1 inhibits downstream cellular signaling. Our previous research found that hyperglycemic conditions affect another protein that is involved in phosphate balance, type III sodium-dependent phosphate transporter 1 (Pit 1). In the present study, we evaluated the insulin resistance of podocytes after 24 h of incubation under hyperinsulinemic conditions. Thereafter, insulin signaling was inhibited. The formation of NPP1/IR complexes was observed at that time. A novel finding in the present study was our observation of an interaction between NPP1 and Pit 1 after the 24 h stimulation of podocytes with insulin. After downregulation of the SLC20A1 gene, which encodes Pit 1, we established insulin resistance in podocytes that were cultured under native conditions, manifested as a lack of intracellular insulin signaling and the inhibition of glucose uptake via the glucose transporter type 4. These findings suggest that Pit 1 might be a major factor that participates in the NPP1-mediated inhibition of insulin signaling.


Asunto(s)
Nefropatías Diabéticas , Resistencia a la Insulina , Podocitos , Humanos , Insulina/farmacología , Insulina/metabolismo , Podocitos/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Nefropatías Diabéticas/metabolismo , Fosfatos/metabolismo , Glucosa/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo
12.
Cells ; 12(11)2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37296607

RESUMEN

Changes in the dynamic architecture of podocytes, the glomerular epithelial cells, lead to kidney dysfunction. Previous studies on protein kinase C and casein kinase 2 substrates in neurons 2 (PACSIN2), a known regulator of endocytosis and cytoskeletal organization, reveal a connection between PACSIN2 and kidney pathogenesis. Here, we show that the phosphorylation of PACSIN2 at serine 313 (S313) is increased in the glomeruli of rats with diabetic kidney disease. We found that phosphorylation at S313 is associated with kidney dysfunction and increased free fatty acids rather than with high glucose and diabetes alone. Phosphorylation of PACSIN2 emerged as a dynamic process that fine-tunes cell morphology and cytoskeletal arrangement, in cooperation with the regulator of the actin cytoskeleton, Neural Wiskott-Aldrich syndrome protein (N-WASP). PACSIN2 phosphorylation decreased N-WASP degradation while N-WASP inhibition triggered PACSIN2 phosphorylation at S313. Functionally, pS313-PACSIN2 regulated actin cytoskeleton rearrangement depending on the type of cell injury and the signaling pathways involved. Collectively, this study indicates that N-WASP induces phosphorylation of PACSIN2 at S313, which serves as a mechanism whereby cells regulate active actin-related processes. The dynamic phosphorylation of S313 is needed to regulate cytoskeletal reorganization.


Asunto(s)
Caseínas , Podocitos , Ratas , Animales , Fosforilación , Caseínas/metabolismo , Podocitos/metabolismo , Serina/metabolismo , Neuronas/metabolismo
13.
Nephrol Dial Transplant ; 38(11): 2617-2626, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37230953

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) is common but heterogenous and is associated with multiple adverse outcomes. The National Unified Renal Translational Research Enterprise (NURTuRE)-CKD cohort was established to investigate risk factors for clinically important outcomes in persons with CKD referred to secondary care. METHODS: Eligible participants with CKD stages G3-4 or stages G1-2 plus albuminuria >30 mg/mmol were enrolled from 16 nephrology centres in England, Scotland and Wales from 2017 to 2019. Baseline assessment included demographic data, routine laboratory data and research samples. Clinical outcomes are being collected over 15 years by the UK Renal Registry using established data linkage. Baseline data are presented with subgroup analysis by age, sex and estimated glomerular filtration rate (eGFR). RESULTS: A total of 2996 participants was enrolled. Median (interquartile range) age was 66 (54-74) years, eGFR 33.8 (24.0-46.6) mL/min/1.73 m2 and urine albumin to creatinine ratio 209 (33-926) mg/g; 58.5% were male. Of these participants, 1883 (69.1%) were in high-risk CKD categories. Primary renal diagnosis was CKD of unknown cause in 32.3%, glomerular disease in 23.4% and diabetic kidney disease in 11.5%. Older participants and those with lower eGFR had higher systolic blood pressure and were less likely to be treated with renin-angiotensin system inhibitors (RASi) but were more likely to receive a statin. Female participants were less likely to receive a RASi or statin. CONCLUSIONS: NURTuRE-CKD is a prospective cohort of persons who are at relatively high risk of adverse outcomes. Long-term follow-up and a large biorepository create opportunities for research to improve risk prediction and to investigate underlying mechanisms to inform new treatment development.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Insuficiencia Renal Crónica , Masculino , Humanos , Femenino , Anciano , Tasa de Filtración Glomerular , Estudios Prospectivos , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/complicaciones , Factores de Riesgo , Inglaterra , Albuminuria/epidemiología
14.
Clin Proteomics ; 20(1): 19, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37076799

RESUMEN

BACKGROUND: Halting progression of chronic kidney disease (CKD) to established end stage kidney disease is a major goal of global health research. The mechanism of CKD progression involves pro-inflammatory, pro-fibrotic, and vascular pathways, but pathophysiological differentiation is currently lacking. METHODS: Plasma samples of 414 non-dialysis CKD patients, 170 fast progressors (with ∂ eGFR-3 ml/min/1.73 m2/year or worse) and 244 stable patients (∂ eGFR of - 0.5 to + 1 ml/min/1.73 m2/year) with a broad range of kidney disease aetiologies, were obtained and interrogated for proteomic signals with SWATH-MS. We applied a machine learning approach to feature selection of proteins quantifiable in at least 20% of the samples, using the Boruta algorithm. Biological pathways enriched by these proteins were identified using ClueGo pathway analyses. RESULTS: The resulting digitised proteomic maps inclusive of 626 proteins were investigated in tandem with available clinical data to identify biomarkers of progression. The machine learning model using Boruta Feature Selection identified 25 biomarkers as being important to progression type classification (Area Under the Curve = 0.81, Accuracy = 0.72). Our functional enrichment analysis revealed associations with the complement cascade pathway, which is relevant to CKD as the kidney is particularly vulnerable to complement overactivation. This provides further evidence to target complement inhibition as a potential approach to modulating the progression of diabetic nephropathy. Proteins involved in the ubiquitin-proteasome pathway, a crucial protein degradation system, were also found to be significantly enriched. CONCLUSIONS: The in-depth proteomic characterisation of this large-scale CKD cohort is a step toward generating mechanism-based hypotheses that might lend themselves to future drug targeting. Candidate biomarkers will be validated in samples from selected patients in other large non-dialysis CKD cohorts using a targeted mass spectrometric analysis.

15.
Clin J Am Soc Nephrol ; 18(6): 727-738, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37055195

RESUMEN

BACKGROUND: IgA nephropathy can progress to kidney failure, and risk assessment soon after diagnosis has advantages both for clinical management and the development of new therapeutics. We present relationships among proteinuria, eGFR slope, and lifetime risks for kidney failure. METHODS: The IgA nephropathy cohort (2299 adults and 140 children) of the UK National Registry of Rare Kidney Diseases (RaDaR) was analyzed. Patients enrolled had a biopsy-proven diagnosis of IgA nephropathy plus proteinuria >0.5 g/d or eGFR <60 ml/min per 1.73 m 2 . Incident and prevalent populations and a population representative of a typical phase 3 clinical trial cohort were studied. Analyses of kidney survival were conducted using Kaplan-Meier and Cox regression. eGFR slope was estimated using linear mixed models with random intercept and slope. RESULTS: The median (Q1, Q3) follow-up was 5.9 (3.0, 10.5) years; 50% of patients reached kidney failure or died in the study period. The median (95% confidence interval [CI]) kidney survival was 11.4 (10.5 to 12.5) years; the mean age at kidney failure/death was 48 years, and most patients progressed to kidney failure within 10-15 years. On the basis of eGFR and age at diagnosis, almost all patients were at risk of progression to kidney failure within their expected lifetime unless a rate of eGFR loss ≤1 ml/min per 1.73 m 2 per year was maintained. Time-averaged proteinuria was significantly associated with worse kidney survival and more rapid eGFR loss in incident, prevalent, and clinical trial populations. Thirty percent of patients with time-averaged proteinuria of 0.44 to <0.88 g/g and approximately 20% of patients with time-averaged proteinuria <0.44 g/g developed kidney failure within 10 years. In the clinical trial population, each 10% decrease in time-averaged proteinuria from baseline was associated with a hazard ratio (95% CI) for kidney failure/death of 0.89 (0.87 to 0.92). CONCLUSIONS: Outcomes in this large IgA nephropathy cohort are generally poor with few patients expected to avoid kidney failure in their lifetime. Significantly, patients traditionally regarded as being low risk, with proteinuria <0.88 g/g (<100 mg/mmol), had high rates of kidney failure within 10 years.


Asunto(s)
Glomerulonefritis por IGA , Fallo Renal Crónico , Adulto , Niño , Humanos , Glomerulonefritis por IGA/complicaciones , Glomerulonefritis por IGA/epidemiología , Fallo Renal Crónico/terapia , Tasa de Filtración Glomerular , Riñón , Proteinuria/etiología , Progresión de la Enfermedad , Estudios Retrospectivos
16.
Kidney Int ; 104(2): 265-278, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36940798

RESUMEN

About 30% of patients who have a kidney transplant with underlying nephrotic syndrome (NS) experience rapid relapse of disease in their new graft. This is speculated to be due to a host-derived circulating factor acting on podocytes, the target cells in the kidney, leading to focal segmental glomerulosclerosis (FSGS). Our previous work suggests that podocyte membrane protease receptor 1 (PAR-1) is activated by a circulating factor in relapsing FSGS. Here, the role of PAR-1 was studied in human podocytes in vitro, and using a mouse model with developmental or inducible expression of podocyte-specific constitutively active PAR-1, and using biopsies from patients with nephrotic syndrome. In vitro podocyte PAR-1 activation caused a pro-migratory phenotype with phosphorylation of the kinase JNK, VASP protein and docking protein Paxillin. This signaling was mirrored in podocytes exposed to patient relapse-derived NS plasma and in patient disease biopsies. Both developmental and inducible activation of transgenic PAR-1 (NPHS2 Cre PAR-1Active+/-) caused early severe nephrotic syndrome, FSGS, kidney failure and, in the developmental model, premature death. We found that the non-selective cation channel protein TRPC6 could be a key modulator of PAR-1 signaling and TRPC6 knockout in our mouse model significantly improved proteinuria and extended lifespan. Thus, our work implicates podocyte PAR-1 activation as a key initiator of human NS circulating factor and that the PAR-1 signaling effects were partly modulated through TRPC6.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Síndrome Nefrótico , Podocitos , Animales , Humanos , Podocitos/patología , Síndrome Nefrótico/patología , Glomeruloesclerosis Focal y Segmentaria/patología , Canal Catiónico TRPC6/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Modelos Animales de Enfermedad , Recurrencia
17.
Pediatr Nephrol ; 38(11): 3513-3518, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36952039

RESUMEN

Nephrotic syndrome (NS) consists of the clinical triad of hypoalbuminaemia, high levels of proteinuria and oedema, and describes a heterogeneous group of disease processes with different underlying drivers. The existence of circulating factor disease (CFD) as a driver of NS has been epitomised by a subset of patients who exhibit disease recurrence after transplantation, alongside laboratory work. Several circulating factors have been proposed and studied, broadly grouped into protease components such as soluble urokinase-type plasminogen activator (suPAR), hemopexin (Hx) and calcium/calmodulin-serine protease kinase (CASK), and other circulating proteases, and immune components such as TNF-α, CD40 and cardiotrophin-like cytokine-1 (CLC-1). While currently there is no definitive way of assessing risk of CFD pre-transplantation, promising work is emerging through the study of 'multi-omic' bioinformatic data from large national cohorts and biobanks.


Asunto(s)
Síndrome Nefrótico , Humanos , Proteinuria , Receptores del Activador de Plasminógeno Tipo Uroquinasa
18.
Biomedicines ; 11(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36831050

RESUMEN

A small subset of people with nephrotic syndrome (NS) have genetically driven disease. However, the disease mechanisms for the remaining majority are unknown. Epigenetic marks are reversible but stable regulators of gene expression with utility as biomarkers and therapeutic targets. We aimed to identify and assess all published human studies of epigenetic mechanisms in NS. PubMed (MEDLINE) and Embase were searched for original research articles examining any epigenetic mechanism in samples collected from people with steroid resistant NS, steroid sensitive NS, focal segmental glomerulosclerosis or minimal change disease. Study quality was assessed by using the Joanna Briggs Institute critical appraisal tools. Forty-nine studies met our inclusion criteria. The majority of these examined micro-RNAs (n = 35, 71%). Study quality was low, with only 23 deemed higher quality, and most of these included fewer than 100 patients and failed to validate findings in a second cohort. However, there were some promising concordant results between the studies; higher levels of serum miR-191 and miR-30c, and urinary miR-23b-3p and miR-30a-5p were observed in NS compared to controls. We have identified that the epigenome, particularly DNA methylation and histone modifications, has been understudied in NS. Large clinical studies, which utilise the latest high-throughput technologies and analytical pipelines, should focus on addressing this critical gap in the literature.

19.
Sci Rep ; 13(1): 766, 2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36641502

RESUMEN

Podocytes constitute an external layer of the glomerular filtration barrier, injury to which is a hallmark of renal disease. Mitochondrial dysfunction often accompanies podocyte damage and is associated with an increase in oxidative stress and apoptosis. ß-Aminoisobutyric acid (BAIBA) belongs to natural ß-amino acids and is known to exert anti-inflammatory and antioxidant effects. BAIBA has been reported to be involved in regulating mitochondrial dynamics, but unknown is whether BAIBA influences podocyte bioenergetics. The present study showed that human podocytes express the BAIBA receptor, Mas-related G protein-coupled receptor type D (MRGPRD), which is sensitive to BAIBA stimulation. The treatment of podocytes with L-BAIBA significantly increased their respiratory parameters, such as basal and maximal respiration, adenosine triphosphate (ATP) production, and spare respiratory capacity. We also found that L-BAIBA altered mitochondrial quantity, size, and shape, promoting organelle elongation and branching. L-BAIBA significantly upregulated peroxisome proliferator activated receptor γ coactivator-1α (PGC-1α) and transcription factor A mitochondrial (TFAM), indicating an increase in mitochondrial biogenesis. Our results demonstrate a novel regulatory mechanism of mitochondrial dynamics in podocytes, which may be important for maintaining their functions in the renal filtration barrier and prompting further investigations of preventing or ameliorating mitochondrial damage in podocytes in pathological states.


Asunto(s)
Podocitos , Humanos , Podocitos/metabolismo , Biogénesis de Organelos , Estrés Oxidativo , Respiración , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
20.
Pediatr Nephrol ; 38(6): 1793-1800, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36357634

RESUMEN

BACKGROUND: Idiop athic nephrotic syndrome (INS) is classified in children according to response to initial corticosteroid therapy into steroid-sensitive (SSNS) and steroid-resistant nephrotic syndrome (SRNS), and in adults according to histology into minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS). However, there is well-recognised phenotypic overlap between these entities. Genome-wide association studies (GWAS) have shown a strong association between SSNS and variation at HLA, suggesting an underlying immunological basis. We sought to determine whether a risk score generated from genetic variants associated with SSNS could be used to gain insight into the pathophysiology of INS presenting in other ways. METHODS: We developed an SSNS genetic risk score (SSNS-GRS) from the five variants independently associated with childhood SSNS in a previous European GWAS. We quantified SSNS-GRS in independent cohorts of European individuals with childhood SSNS, non-monogenic SRNS, MCD, and FSGS, and contrasted them with SSNS-GRS quantified in individuals with monogenic SRNS, membranous nephropathy (a different immune-mediated disease-causing nephrotic syndrome), and healthy controls. RESULTS: The SSNS-GRS was significantly elevated in cohorts with SSNS, non-monogenic SRNS, MCD, and FSGS compared to healthy participants and those with membranous nephropathy. The SSNS-GRS in all cohorts with non-monogenic INS were also significantly elevated compared to those with monogenic SRNS. CONCLUSIONS: The shared genetic risk factors among patients with different presentations of INS strongly suggests a shared autoimmune pathogenesis when monogenic causes are excluded. Use of the SSNS-GRS, in addition to testing for monogenic causes, may help to classify patients presenting with INS. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Glomerulonefritis Membranosa , Glomeruloesclerosis Focal y Segmentaria , Nefrosis Lipoidea , Síndrome Nefrótico , Niño , Humanos , Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/genética , Nefrosis Lipoidea/diagnóstico , Nefrosis Lipoidea/tratamiento farmacológico , Nefrosis Lipoidea/genética , Glomeruloesclerosis Focal y Segmentaria/diagnóstico , Glomeruloesclerosis Focal y Segmentaria/tratamiento farmacológico , Glomeruloesclerosis Focal y Segmentaria/genética , Estudio de Asociación del Genoma Completo , Esteroides , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...