Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38893388

RESUMEN

Drilling through shale formations can be expensive and time-consuming due to the instability of the wellbore. Further, there is a need to develop inhibitors that are environmentally friendly. Our study discovered a cost-effective solution to this problem using Gum Arabic (ArG). We evaluated the inhibition potential of an ArG clay swelling inhibitor and fluid loss controller in water-based mud (WBM) by conducting a linear swelling test, capillary suction timer test, and zeta potential, fluid loss, and rheology tests. Our results displayed a significant reduction in linear swelling of bentonite clay (Na-Ben) by up to 36.1% at a concentration of 1.0 wt. % ArG. The capillary suction timer (CST) showed that capillary suction time also increased with the increase in the concentration of ArG, which indicates the fluid-loss-controlling potential of ArG. Adding ArG to the drilling mud prominently decreased fluid loss by up to 50%. Further, ArG reduced the shear stresses of the base mud, showing its inhibition and friction-reducing effect. These findings suggest that ArG is a strong candidate for an alternate green swelling inhibitor and fluid loss controller in WBM. Introducing this new green additive could significantly reduce non-productive time and costs associated with wellbore instability while drilling. Further, a dynamic linear swelling model, based on machine learning (ML), was created to forecast the linear swelling capacity of clay samples treated with ArG. The ML model proposed demonstrates exceptional accuracy (R2 score = 0.998 on testing) in predicting the swelling properties of ArG in drilling mud.

2.
Heliyon ; 9(11): e22158, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034666

RESUMEN

In this study, a silver nanoparticle anchored transparent tape sensor was used to detect 1,4-bis(2-aminoethyl)piperazine functionalized GO (AEP-GO) adsorbed on carbon steel surface utilizing the surface-enhanced Raman scattering (SERS) technique. SERS detection enabled the extreme amplification of Raman signals emitted by inhibitor molecules in order to describe their adsorption behavior on metallic/alloy surfaces. The strong corrosion inhibition performance of AEP-GO against carbon steel corrosion in 15 % HCl solution was proven by weight loss, electrochemical measurements and surface characterization techniques in a previous study. The SERS analysis showed the Raman peaks intensity of AEP-GO on the carbon surface gradually increases with increasing AEP-GO concentration. The increasing intensity with concentration correlated well with the previously reported weight loss and electrochemical results. DFT calculation was also carried out to understand the nature of interaction between the adsorbed AEP-GO molecules and the silver nanoparticles. The AEP-GO_Ag adduct's optimized structure reveals the silver metals approached the oxygen atom at the GO epoxy group in AEP-GO rather than the oxygen atoms at the carbonyl and hydroxyl groups. With no restrictions on substrate materials, the fabricated SERS sensor created in this study can be employed as a versatile sensor to characterize corrosion adsorption processes on metal surfaces.

3.
Nanomaterials (Basel) ; 13(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36985971

RESUMEN

In this work, polyethyleneimine-grafted graphene oxide (PEI/GO) is synthesized using graphene, polyethyleneimine, and trimesoyl chloride. Both graphene oxide and PEI/GO are characterized by a Fourier-transform infrared (FTIR) spectrometer, a scanning electron microscope (SEM), and energy-dispersive X-ray (EDX) spectroscopy. Characterization results confirm that polyethyleneimine is uniformly grafted on the graphene oxide nanosheets and, thus, also confirm the successful synthesis of PEI/GO. PEI/GO adsorbent is then evaluated for the removal of lead (Pb2+) from aqueous solutions, and the optimum adsorption is attained at pH 6, contact time of 120 min, and PEI/GO dose of 0.1 g. While chemosorption is dominating at low Pb2+ concentrations, physisorption is dominating at high concentrations and the adsorption rate is controlled by the boundary-layer diffusion step. In addition, the isotherm study confirms the strong interaction between Pb2+ ions and PEI/GO and reveals that the adsorption process obeys well the Freundlich isotherm model (R2 = 0.9932) and the maximum adsorption capacity (qm) is 64.94 mg/g, which is quite high compared to some of the reported adsorbents. Furthermore, the thermodynamic study confirms the spontaneity (negative ΔG° and positive ΔS°) and the endothermic nature (ΔH° = 19.73 kJ/mol) of the adsorption process. The prepared adsorbent (PEI/GO) offers a potential promise for wastewater treatment because of its fast and high uptake removal capacity and could be used as an effective adsorbent for the removal of Pb2+-ions and other heavy metals from industrial wastewater.

4.
Int J Biol Macromol ; 229: 210-223, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36592846

RESUMEN

Functionalization and various applications of biomaterials have progressively gained a major interest due to the cost-effectiveness, renewability, and biodegradability of these substrates. The current work focalized on the functionalization of microcrystalline cellulose with polyethyleneimine solution (3 %, 5 %, and 10 %) and hydrazine sulfate salt (1:1, 1:2, 2:1) using an impregnation method. Untreated and treated samples were characterized using FT-IR, SEM, XRD, TGA, and DTA analyses. The crystallinity index values for control microcrystalline cellulose, cellulose-polyethyleneimine, and cellulose-hydrazine were 57.13.8 %, 57.29 %, and 52.62 %, respectively. Cellulose-polyethyleneimine (5 %) and cellulose-hydrazine (1:1) displayed the highest adsorption capacities for calmagite (an anionic dye). At equilibrium, the maximum adsorption capacities for calmagite achieved 104 mg/g for cellulose-polyethyleneimine (5 %), 45 mg/g for cellulose-hydrazine (1:1), and only 12.4 mg/g for untreated cellulose. Adsorption kinetics complied well with the pseudo-second-order kinetic model. The adsorption isotherm fitted well with the Langmuir isotherm. Overall, the functionalized cellulosic samples could be considered potential materials for the treatment of contaminated waters.


Asunto(s)
Colorantes , Contaminantes Químicos del Agua , Colorantes/química , Polietileneimina/química , Espectroscopía Infrarroja por Transformada de Fourier , Adsorción , Celulosa/química , Hidrazinas , Contaminantes Químicos del Agua/química , Cinética , Concentración de Iones de Hidrógeno
5.
J Colloid Interface Sci ; 630(Pt B): 591-610, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36335778

RESUMEN

Experimental weight loss and electrochemical measurements were used at ambient and high temperatures to evaluate the corrosion inhibition efficacies of diaminodecane functionalized graphene oxide (DAD-GO) and diaminododecane functionalized graphene oxide (DADD-GO) against carbon steel corrosion in 15.0 %HCl, mimicking an acidizing environment in an oil/gas well. The GO was made from waste graphite and then grafted with the diaminoalkanes (DAD & DADD). The GO and functionalized GOs were described using FTIR, Raman, TEM, and TGA. Concentration and temperature effects on the inhibitors'performance were also looked into. The inhibition efficiency increased with concentration at room temperature, reaching a maximum of 84 % for DAD-GO and 78 % for DADD-GO at a concentration of 5 ppm for both. At the temperatures studied, the inhibitors performed well at extremely low concentrations; however, as the temperature rises, the inhibitor's performance decreases. According to the PDP measurement, the inhibitors function primarily as mixed-type inhibitors. The Langmuir adsorption theory was found to be followed by thestudied compound. AFM, SEM, EDX, and FTIR characterization of the steel surfaces revealed that the functionalized GOs molecules adsorbed on the steel to create a protective layer that insulated the steel from aggressiveacid assault after the immersion time (24 h) in the inhibited solutions. DFT calculations were utilized to determine the relative stability of functionalized GOs toGOand to learn more about the inhibitor molecules' interactions with the steel surface. The DFT calculations corroborated the experimental findings. This study is important in tackling two significant environmental concerns: corrosion and waste management because GO is manufactured from waste graphite.


Asunto(s)
Grafito , Acero , Corrosión , Acero/química , Carbono , Yacimiento de Petróleo y Gas
6.
J Colloid Interface Sci ; 629(Pt B): 522-534, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36174295

RESUMEN

The superhydrophobic/superoleophilic materials based on polyurethane foams have been layered with three different polymers and extensive modification with iron/magnetic nanocomposite. The general desires are to study the effect of the polymer layer and to eliminate the oil contaminant from the oil-water system which is crucial due to the development of environmental technologies. These materials were generated by facile dip-coating two-step method on the polyurethane foams (PUF) surface. PUF was directly layered with polydopamine/polypyrrole/polyaniline (PDA/PPy/PANI) and incorporated with Fe-SA (stearic acid) nanocomposites by ultrasonication and refluxing. In addition, characterization by FTIR, SEM/EDX, XRD, and TGA presented that the polymer layer and Fe-SA nanocomposites successfully covered the PUF surface caused by the chelating interaction between the carboxylates and active sites on iron particles due to intermolecular hydrogen bond interaction. Interestingly, the water contact angle (WCA) measurement of the nanocomposites displayed that the contact angle significantly improved up to 164°. After 20 cycles of oil absorption capacity, the WCA steadily remained up to 153° indicating powerful superhydrophobic properties of the materials. Furthermore, the oil absorption capacity of the materials was evaluated using typical oil-water separation methods such as reusability, separation efficiency, and oil permeate flux. The results exhibited that the modified PUFs have enhanced the absorption capacity up to 44 times the foam weight, 99 % separation efficiency, and about 8000 L.m-2.h-1 oil flux. For oil removal, the dyed oil phase was rapidly absorbed within 2 s confirming the highly used products for a wide area of oil-water separation. PDA-coated PUF nanocomposites obtained the most outstanding results due to their remarkable interfacial adhesion properties which provide larger active functional groups for hydrogen bonding interaction on PUF surface and Fe-SA nanocomposites.

7.
Front Bioeng Biotechnol ; 10: 1013354, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36568300

RESUMEN

Schistosomiasis is one of the neglected tropical diseases that affect millions of people worldwide. Globally, it affects economically poor countries, typically due to a lack of proper sanitation systems, and poor hygiene conditions. Currently, no vaccine is available against schistosomiasis, and the preferred treatment is chemotherapy with the use of praziquantel. It is a common anti-schistosomal drug used against all known species of Schistosoma. To date, current treatment primarily the drug praziquantel has not been effective in treating Schistosoma species in their early stages. The drug of choice offers low bioavailability, water solubility, and fast metabolism. Globally drug resistance has been documented due to overuse of praziquantel, Parasite mutations, poor treatment compliance, co-infection with other strains of parasites, and overall parasitic load. The existing diagnostic methods have very little acceptability and are not readily applied for quick diagnosis. This review aims to summarize the use of nanotechnology in the treatment, diagnosis, and prevention. It also explored safe and effective substitute approaches against parasitosis. At this stage, various nanomaterials are being used in drug delivery systems, diagnostic kits, and vaccine production. Nanotechnology is one of the modern and innovative methods to treat and diagnose several human diseases, particularly those caused by parasite infections. Herein we highlight the current advancement and application of nanotechnological approaches regarding the treatment, diagnosis, and prevention of schistosomiasis.

8.
RSC Adv ; 12(37): 23869-23888, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36093256

RESUMEN

Anthropogenic carbon dioxide (CO2) emissions have dramatically increased since the industrial revolution, building up in the atmosphere and causing global warming. Sustainable CO2 capture, utilization, and storage (CCUS) techniques are required, and materials and technologies for CO2 capture, conversion, and utilization are of interest. Different CCUS methods such as adsorption, absorption, biochemical, and membrane methods are being developed. Besides, there has been a good advancement in CO2 conversion into viable products, such as photoreduction of CO2 using sunlight into hydrocarbon fuels, including methane and methanol, which is a promising method to use CO2 as fuel feedstock using the advantages of solar energy. There are several methods and various materials used for CO2 conversion. Also, efficient nanostructured catalysts are used for CO2 photoreduction. This review discusses the sources of CO2 emission, the strategies for minimizing CO2 emissions, and CO2 sequestration. In addition, the review highlights the technologies for CO2 capture, separation, and storage. Two categories, non-conversion utilization (direct use) of CO2 and conversion of CO2 to chemicals and energy products, are used to classify different forms of CO2 utilization. Direct utilization of CO2 includes enhanced oil and gas recovery, welding, foaming, and propellants, and the use of supercritical CO2 as a solvent. The conversion of CO2 into chemicals and energy products via chemical processes and photosynthesis is a promising way to reduce CO2 emissions and generate more economically valuable chemicals. Different catalytic systems, such as inorganics, organics, biological, and hybrid systems, are provided. Lastly, a summary and perspectives on this emerging research field are presented.

9.
ACS Omega ; 7(17): 14820-14831, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35557665

RESUMEN

The contamination of groundwater by mercury (Hg) is a serious global threat, and its removal is of great importance. Activated carbon (AC) is considered a very promising adsorbent to remove Hg from water systems. However, specific functional groups can be added to AC to enhance its adsorption efficiency. In this work, AC was synthesized from palm shells and grafted with a copolymer of acrylamide and methacrylic acid to produce a polyacrylate-modified carbon (PAMC) composite. The synthesized adsorbent (PAMC) was characterized by Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), electron dispersive X-ray (EDX) spectroscopy, and Brunauer-Emmett-Teller (BET) analysis. PAMC was then evaluated for Hg removal from aqueous solutions, and the adsorption efficiency was optimized under several parameters (pH, contact time, and PAMC dosage). Kinetic, isotherm, and thermodynamic investigations were performed to gain a further understanding of the adsorption properties. The adsorption data were best fitted by pseudo-second-order and Redlich-Peterson models. Also, the thermodynamic investigation confirmed the spontaneity and the endothermic nature of the Hg adsorption process over PAMC. The maximum adsorption capacity (q m) of PAMC was found to be 76.3 mg/g ,which is relatively higher than some activated carbon-based adsorbents. Therefore, PAMC offers a potential promise for wastewater treatment due to its fast and high uptake removal capacity in addition to the cheap and environmentally friendly activated carbon source.

10.
ACS Omega ; 7(17): 14535-14543, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35557682

RESUMEN

The facile and environmentally friendly synthesis of porous organic polymers with designed polar functionalities decorating the interior frameworks as an excellent adsorbent for selective carbon dioxide capture and metal ion removal is a target worth pursuing for environmental applications. In this regard, two azo-linked porous organic polymers denoted man-Azo-P1 and man-Azo-P2 were synthesized in water by the azo-linking of 4,4'-diaminobiphenyl (benzidine) and 4,4'-methylenedianiline, respectively, with 1,3,5-trihydroxybenzene. The resulting polymers showed good BET surface areas of 290 and 78 m2 g-1 for man-Azo-P1 and man-Azo-P2, respectively. Due to the enriched core functionality of the azo (-N=N-) and hydroxyl groups along with the porous frameworks, man-Azo-P1 exhibited a good CO2 uptake capacity of 32 cm3 g-1 at 273 K and 1 bar, in addition to the remarkable removal of lead (Pd), chromium (Cr), arsenic (As), nickel (Ni), copper (Cu), and mercury (Hg) ions. This performance of the synthesized man-Azo-P1 and man-Azo-P2 in the dual application of CO2 capture and heavy metal ion removal highlights the unique properties of azo-linked POPs as excellent and stable sorbent materials for the current challenging environmental applications.

11.
Environ Sci Pollut Res Int ; 29(28): 42560-42600, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35380322

RESUMEN

Water and wastewater treatment applications stand to benefit immensely from the design and development of new materials based on silica nanoparticles and their derivatives. Nanosilica possesses unique properties, including low toxicity, chemical inertness, and excellent biocompatibility, and can be developed from a variety of sustainable precursor materials. Herein, we provide an account of the recent advances in the synthesis and utilization of nanosilica for wastewater treatment. This review covers key physicochemical aspects of several nanosilica materials and a variety of nanotechnology-enabled wastewater treatment techniques such as adsorption, separation membranes, and antimicrobial applications. It also discusses the prospective design and tuning options for nanosilica production, such as size control, morphological tuning, and surface functionalization. Informative discussions on nanosilica production from agricultural wastes have been offered, with a focus on the synthesis methodologies and pretreatment requirements for biomass precursors. The characterization of the different physicochemical features of nanosilica materials using critical surface analysis methods is discussed. Bio-hybrid nanosilica materials have also been highlighted to emphasize the critical relevance of environmental sustainability in wastewater treatment. To guarantee the thoroughness of the review, insights into nanosilica regeneration and reuse are provided. Overall, it is envisaged that this work's insights and views will inspire unique and efficient nanosilica material design and development with robust properties for water and wastewater treatment applications.


Asunto(s)
Aguas Residuales , Purificación del Agua , Estudios Prospectivos , Dióxido de Silicio/química , Agua , Purificación del Agua/métodos
12.
Environ Sci Pollut Res Int ; 29(39): 58950-58962, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35377125

RESUMEN

Methylene blue (MB) is an important compound in textile and wood processing industries as well as in medical research for combating malaria parasites. Despite these versatilities, direct contact with human beings results in adverse health challenges, and contamination of water bodies affects aquatic biotas. Hence, it is important to treat MB-contaminated wastewaters before disposal into water bodies. Adsorption, which depends on some parameters, proves to be an easy, cheap, and efficient technique to remove pollutants in wastewater. However, investigating these parameters experimentally is a laborious, expensive, and time-consuming process whose efficiency is limited by the conditions imposed on the experiments. Herein, we developed polynomial multiple linear regression (MLR) and the three other machine learning models to study the interplay of five adsorption parameters (descriptors) and their effects on the removal of methylene blue from water using aluminized activated carbon (Al-AC). The optimized machine learning models, that is random forest (R = 0.9905), support vector regression (R = 0.9946), and multilayer perceptron (R = 0.9993), outperformed the best MLR model (R = 0.9845) by small margins. High statistical R and low error values are not enough to satisfactorily classify a model. Hence, the generalizability of the models was further determined under different experimental conditions, and the order of predictive accuracy of the models was established as ANN > SVR > RF > 2-degree MLR. Aluminum loading, adsorbent dosage, and initial adsorbate concentration are the most important factors affecting MB removal. The removal efficiency, which could reach 99.9% at optimum conditions, does not depend on the temperature thus eliminating the need to install temperature control apparatus for practical setup.


Asunto(s)
Carbón Orgánico , Contaminantes Químicos del Agua , Adsorción , Humanos , Concentración de Iones de Hidrógeno , Cinética , Azul de Metileno , Aguas Residuales , Agua
13.
J Colloid Interface Sci ; 614: 58-65, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35085903

RESUMEN

Photocatalytic materials have received great interest due to their capability for remediating environmental pollution especially water pollution. However, the scalable application of the current photocatalytic materials is still limited by their poor visible-light absorption and low separation efficiency of charge carriers. Here, we report in-situ sunlight-driven tuning of photo-induced electron-hole generation and separation rates in bismuth oxychlorobromide (BiOCl0.8Br0.2) nanoflowers. It shows photochromic response under 10-minute natural sunlight irradiation changing color from white to black. The characterization reveals the presence of hydroxyl groups on the surface of the pristine BiOCl0.8Br0.2 nanoflowers and abundant oxygen vacancies for the sunlight-irradiated BiOCl0.8Br0.2 nanoflowers which narrow the bandgap and serve as electron trapping centers, thus effectively enhancing the generation and separation rates of electron-hole pairs. As a result, the sunlight-irradiated BiOCl0.8Br0.2 film demonstrates outstanding photocatalytic performance in water purification such as degrading Rhodamine B (RhB) dye under visible light irradiation with 2-fold higher than its pristine state.

14.
J Hazard Mater ; 423(Pt A): 127044, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34523469

RESUMEN

A simple hydrothermal approach was demonstrated for synthesizing a coupled NiFe2O4-ZnWO4 nanocomposite, wherein one-dimensional ZnWO4 nanorods were inserted into two-dimensional NiFe2O4 nanoplates. Herein, we evaluated the photocatalytic removal of Cr(VI), and degradation of tetracycline (TC) and methylene blue (MB) by the nanocomposite, as well as its ability to split water. The ZnWO4 nanorods enriched the synergistic interactions, upgraded the solar light fascination proficiency, and demonstrated outstanding detachment and migration of the photogenerated charges, as confirmed by a transient photocurrent study and electrochemical impedance spectroscopy measurements. Compared to pristine NiFe2O4 and ZnWO4, the NiFe2O4-ZnWO4 nanocomposite exhibited a higher Cr(VI) reduction (93.5%) and removal of TC (97.9%) and MB (99.6%). Radical trapping results suggested that hydroxyl and superoxide species are dominant reactive species, thereby facilitating the Z-scheme mechanism. Furthermore, a probable photocatalytic mechanism was projected based on the experimental results. The photoelectrochemical analysis confirmed that NiFe2O4-ZnWO4 exhibited minor charge-transfer resistance and large photocurrents. We propose a novel and efficient approach for designing a coupled heterostructured nanocomposites with a significant solar light ability for ecological conservation and water splitting.


Asunto(s)
Contaminantes Ambientales , Óxido de Zinc , Catálisis , Cromo , Compuestos Férricos , Níquel , Óxidos , Tungsteno , Agua , Zinc
15.
Environ Sci Pollut Res Int ; 29(7): 9883-9891, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34508317

RESUMEN

The functionalized graphene oxide-ZnO (fGO/ZnO) nanoflower composites have been studied as a photocatalyst material for flow photodegradation of humic acid (HA) in real samples. The fGO/ZnO nanoflower was prepared via hydrothermal methods. The chemical and physical properties of the synthesized photocatalyst have been carried out by several techniques, including X-ray diffraction (XRD), scanning electron microscope-energy-dispersive spectrometer (SEM-EDS), Fourier transform infrared (FTIR), and UV-Vis spectrophotometer. The photocatalytic study of degradation of HA by flow system is reported. The optimum condition for degradation was found at pH 4.0, a flow rate of 1 mL min-1, and a light intensity of 400 mW cm-2. The degradation efficiency of HA also was influenced by several anion or cation concentration ratios on the system. This method was applied for the degradation of HA in extracted natural HA from the soil, and the efficiency achieved at 98.5%. Therefore, this research provides a low-cost, fast, and reusability method for HA degradation in the environment.


Asunto(s)
Óxido de Zinc , Catálisis , Grafito , Sustancias Húmicas/análisis , Espectroscopía Infrarroja por Transformada de Fourier
16.
Mikrochim Acta ; 189(1): 37, 2021 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-34958414

RESUMEN

A non-enzymatic dopamine electrochemical sensing probe was developed. A hexagonal shape zinc-doped cobalt oxide (Zn-Co2O4) nanostructure was prepared by a facile hydrothermal approach. The combination of Zn, which has an abundance of electrons, and Co3O4 exhibited a synergistically electron-rich nanocomposite. The crystallinity of the nanostructure was investigated using X-ray diffraction. A scanning electron microscope (SEM) was used to examine the surface morphology, revealing hexagonal nanoparticles with an average particle size of 400 nm. High-resolution transmission electron microscopy (HR-TEM) was used to confirm the nanostructure of the doped material. The nanostructure's bonding and functional groups were verified using Fourier transform infrared spectroscopy (FTIR). The electrochemical characterization was conducted by using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and amperometry. The resistivity of the electrode was confirmed through EIS and showed that the bare glassy carbon electrode (GCE) exhibited higher charge transfer resistance as compared to modified Zn-Co2O4/GCE. The sensing probe was developed by modifying the surface of GCE with Zn-Co2O4 nanostructure and tested as an electrochemical sensor for dopamine oxidation; it operated best at a working potential of 0.17 V (vs Ag/AgCl). The developed sensor exhibited a low limit of detection (0.002 µM), a high sensitivity (126 µA. µM-1 cm-2), and a wide linear range (0.2 to 185 µM). The sensor showed a short response time of < 1 s. The sensor's selectivity was investigated in the presence of coexisting species (uric acid, ascorbic acid, adrenaline, epinephrine, norepinephrine, histamine, serotonin, tyramine, phenethylamine, and glucose) with no effects on dopamine determination results. The developed sensor was also successfully used for determining dopamine concentrations in a real sample.


Asunto(s)
Cobalto/química , Dopamina/análisis , Nanocompuestos/química , Óxidos/química , Zinc/química , Espectroscopía Dieléctrica/instrumentación , Espectroscopía Dieléctrica/métodos , Dopamina/química , Electrodos , Límite de Detección , Oxidación-Reducción , Reproducibilidad de los Resultados
17.
Environ Sci Pollut Res Int ; 28(44): 62085-62104, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34590224

RESUMEN

This work comprehensively reviewed the toxicity and risks of various surfactants and their degraded products in the environmental matrices, various analytical procedures, and remediation methods for these surfactants. The findings revealed that the elevated concentration of surfactants and their degraded products disrupt microbial dynamics and their important biogeochemical processes, hinder plant-surviving processes and their ecological niche, and retard the human organic and systemic functionalities. The enormous adverse effects of surfactants on health and the environment necessitate the need to develop, select, and advance the various analytical and assessment techniques to achieve effective identification and quantification of several surfactants in different environmental matrices. Considering the presence of surfactants in trace concentration and environmental matrices, excellent analysis can only be achieved with appropriate extraction, purification, and preconcentration. Despite these pre-treatment procedures, the chromatographic technique is the preferred analytical technique considering its advancement and shortcomings of other techniques. In the literature, the choice or selection of remediation techniques for surfactants depends largely on eco-friendliness, cost-implications, energy requirements, regeneration potential, and generated sludge composition and volume. Hence, the applications of foam fractionation, electrochemical advanced oxidation processes, thermophilic aerobic membranes reactors, and advanced adsorbents are impressive in the clean-up of the surfactants in the environment. This article presents a compendium of knowledge on environmental toxicity and risks, analytical techniques, and remediation methods of surfactants as a guide for policymakers and researchers.


Asunto(s)
Restauración y Remediación Ambiental , Tensoactivos , Sustancias Peligrosas , Humanos , Plantas , Aguas del Alcantarillado , Tensoactivos/toxicidad
18.
J Environ Manage ; 298: 113484, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34391101

RESUMEN

Fabrication of novel metal oxide nanostructured composites is a proficient approach to develop efficient energy storage devices and development of cost-free and eco-friendly metal oxide nanostructures for supercapacitor applications received considerable attention in recent years. The Co3O4 nanocubes-NiO octahedral structured composite was constructed using facile and one-step calcination process. Cyclic voltammetry, charge-discharge, and electrochemical impedance spectral techniques have been employed to analyze the specific capacitance of the synthesized nanostructures and the composites. Specific capacitance and cycling stability of the composites were evaluated with the pristine Co3O4 and NiO nanostructures. The composite showed a specific capacitance of 832 F g-1 at a current density of 0.25 A g-1, which was ~1.5 and ~1.9-times higher than pristine Co3O4 nanocubes and NiO octahedral structure, respectively. On the other hand, electrode showed approximately 50 % capacity retention at a higher current density (5 Ag-1) because of the uniform morphology of Co3O4 and NiO. The charge-discharge stability measurements of the composite showed an admirable specific capacitance retention capability, which was 94.5 % after 2000 continuous charge-discharge cycles at a current density of 5 A g-1. The superior electrochemical performance of the nano-composite was ascribed to synergistic effects and uniform morphology. Efficient nanostructure development using facile and one-step calcination process and electrochemical performance make the synthesized composite a promising device for supercapacitor applications.


Asunto(s)
Nanocompuestos , Óxidos , Técnicas Electroquímicas , Electrodos
19.
Environ Sci Pollut Res Int ; 28(39): 55655-55666, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34138426

RESUMEN

Diatomite (D) as a low-cost and eco-friendly clay was modified by ethylene diamine (EDA)-trimesoyl chloride (TMC) polymer to achieve a novel adsorbent for efficient removal of rhodamine B dye (RB) from wastewater samples. The EDA-TMC polymer was grafted to the surface of diatomite by in situ interfacial polymerization. The prepared p(EDA-TMC)/D adsorbent was characterized by XRD, FTIR, and SEM/EDX techniques. The effective experimental parameters on the adsorption performance were optimized with factorial design analysis. The equilibrium data were better correlated by non-linear Langmuir model compared to non-linear Freundlich model. The Langmuir monolayer adsorption capacity of the p(EDA-TMC)/D adsorbent was determined as 371.8 mg g-1. The key adsorption parameters were optimized by experimental design analysis. The kinetic findings showed the adsorption mechanism of RB onto p(EDA-TMC)/D adsorbent was well designated by the pseudo-second-order kinetic model. The thermodynamic results indicate that the RB adsorption had an exothermic character in thermal nature and was less favorable with increasing temperature from 20 to 60 °C. Furthermore, the adsorption/desorption yield of p(EDA-TMC)/D was still 80%/70% after 5th cycle and reduced to 60%/52% at the end of 8th cycle. Thus, the present study revealed that the developed p(EDA-TMC)/D composite had great adsorption potential for removal of RB from wastewater samples compared to that of different kinds of adsorbents reported in the literature.


Asunto(s)
Diaminas , Aguas Residuales , Cloruros , Tierra de Diatomeas , Etilenos , Rodaminas
20.
J Colloid Interface Sci ; 600: 219-228, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34020120

RESUMEN

Ce3+ ion can effectively sensitize Sm3+ ion via energy transfer, and this phenomenon can led to the development of white light-emitting diodes (WLED). However, interestingly, high correlated color temperature (CCT), poor color-rending index (CRI), poor thermal stability, and low efficacy of available red phosphor still pose immense challenges. Herein, we undertook a combined analysis: X-ray diffraction (XRD), crystal refinement, electron spin resonance (ESR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and diffuse reflection spectroscopy (DRS). We also observed the optical properties of the resulting samples. The Ce3+ and Sm3+ dopants on the Sr2+ and La3+ sites in the mixed cation borate Sr3LaAl3B4O15 (SLAB) phosphors were quantitatively evaluated. A cerium ion merged as a sensitizer, improving the red emission intensity by enhancing it 3.9 times. The energy transfer (ET) between Ce3+ and Sm3+ was examined experimentally and with theoretical models as a function of Ce3+ concentrations at ambient temperatures. Several theoretical models were employed to simulate the luminescence decays of Ce3+ and Sm3+ doped samples at different doping levels and their transfer mechanisms were studied depending on forced electric dipole at each ion. Notably, the electronic sites created by the oxygen vacancies around the Ln3+ ions can effectively justify the highly efficient bluish-red phosphor. Additionally, the SL0.95AB:0.02Ce3+,0.03Sm3+ exhibited outstanding thermal-quenching (TQ) resistance and has > 94.8% intensity at 425 K. WLEDs made with the use of SL0.95AB:0.02Ce3+,0.03Sm3+ furnished an exceptional CRI exceeding 88 and low at CCT 4503 K. These results are superior to the parameters of commercial WLED containing Y3Al5O12:Ce3+ phosphor and blue LED chip (CCT≈7746 K, CRI≈75), and they could be a cornerstone for the fabrication of warm WLEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...