Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Complement Med Ther ; 23(1): 254, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474939

RESUMEN

BACKGROUND: Carum carvi (caraway) of the Apiaceae family has been used in many cultures as a cooking spice and part of the folk medicine. Previous reports primarily focus on the medicinal properties of caraway seed essential oil and the whole seeds extract. However, no effort has been made to study caraway proteins and their potential pharmacological properties, including nonspecific lipid transfer protein (nsLTP), necessitating further research. The current study aimed to characterize nonspecific lipid transfer protein 1 (nsLTP1) from caraway seed, determine its three-dimensional structure, and analyze protein-ligand complex interactions through docking studies. We also evaluated nsLTP1 in vitro cytotoxic effect and antioxidant capacity. Additionally, nsLTP1 thermal- and pH- stability were investigated. METHODS: Caraway nsLTP1 was purified using two-dimensional chromatography. The complete amino acid sequence of nsLTP1 was achieved by intact protein sequence for the first 20 residues and the overlapping digested peptides. The three-dimensional structure was predicted using MODELLER. Autodock Vina software was employed for docking fatty acids against caraway nsLTP1. Assessment of nsLTP1 cytotoxic activity was achieved by MTS assay, and the Trolox equivalent antioxidant capacity (TAC) was determined. Thermal and pH stability of the nsLTP1 was examined by circular dichroism (CD) spectroscopy. RESULTS: Caraway nsLTP1 is composed of 91 residues and weighs 9652 Da. The three-dimensional structure of caraway nsLTP1 sequence was constructed based on searching known structures in the PDB. We chose nsLTP of Solanum melongena (PDB ID: 5TVI) as the modeling template with the highest identity among all other homologous proteins. Docking linolenic acid with caraway protein showed a maximum binding score of -3.6 kcal/mol. A preliminary screening of caraway nsLTP1 suppressed the proliferation of human breast cancer cell lines MDA-MB-231 and MCF-7 in a dose­dependent manner with an IC50 value of 52.93 and 44.76 µM, respectively. Also, nsLTP1 (41.4 µM) showed TAC up to 750.4 µM Trolox equivalent. Assessment of nsLTP1 demonstrated high thermal/pH stability. CONCLUSION: To the best of our knowledge, this is the first study carried out on nsLTP1 from caraway seeds. We hereby report the sequence of nsLTP1 from caraway seeds and its possible interaction with respective fatty acids using in silico approach. Our data indicated that the protein had anticancer and antioxidant activities and was thermally stable.


Asunto(s)
Carum , Humanos , Carum/química , Antioxidantes/farmacología , Antioxidantes/análisis , Ácidos Grasos , Semillas/química
2.
Rapid Commun Mass Spectrom ; 37(15): e9537, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37184249

RESUMEN

RATIONALE: There is currently no treatment for spinocerebellar ataxias (SCAs), which are a group of genetic disorders that often cause a lack of coordination, difficulty walking, slurred speech, tremors, and eventually death. Activation of KCa 2.2/KCa 2.3 channels reportedly exerts beneficial effects in SCAs. Here, we report the development and validation of an analytical method for quantitating a recently developed positive allosteric modulator of KCa 2.2/KCa 2.3 channels (compound 2q) in mouse plasma. METHODS: Mouse plasma samples (10 µL) containing various concentrations of 2q were subjected to protein precipitation in the presence of a structurally similar internal standard (IS). Subsequently, the analytes were separated on a C18 ultrahigh-performance liquid chromatography column and detected by a tandem mass spectrometer. The method was validated using US Food and Drug Administration (FDA) guidelines. Finally, the validated assay was applied to the measurement of the plasma concentrations of 2q in plasma samples taken from mice after single intravenous doses of 2 mg/kg of 2q, and the pharmacokinetic parameters of 2q were determined. RESULTS: The calibration standards were linear (r2 ≥ 0.99) in the range of 1.56-200 nM of 2q with intra- and inter-run accuracy and precision values within the FDA guidelines. The lower limit of quantitation of the assay was 1.56 nM (0.258 pg on the column). The recoveries of 2q and IS from plasma were >94%, with no appreciable matrix effect. The assay showed no significant carryover, and the plasma samples stored at -80°C or the processed samples stored in the autosampler at 10°C were stable for at least 3 weeks and 36 h, respectively. After intravenous injection, 2q showed a bi-exponential decline pattern in the mouse plasma, with a clearance of 30 mL/min/kg, a terminal volume of distribution of 1.93 mL/kg, and a terminal half-life of 45 min. CONCLUSIONS: The developed assay is suitable for preclinical pharmacokinetic-pharmacodynamic studies of 2q as a potential drug candidate for ataxias.


Asunto(s)
Plasma , Espectrometría de Masas en Tándem , Ratones , Animales , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Plasma/química , Reproducibilidad de los Resultados
3.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36986567

RESUMEN

The entry of proteins through the cell membrane is challenging, thus limiting their use as potential therapeutics. Seven cell-penetrating peptides, designed in our laboratory, were evaluated for the delivery of proteins. Fmoc solid-phase peptide synthesis was utilized for the synthesis of seven cyclic or hybrid cyclic-linear amphiphilic peptides composed of hydrophobic (tryptophan (W) or 3,3-diphenylalanine (Dip) and positively-charged arginine (R) residues, such as [WR]4, [WR]9, [WWRR]4, [WWRR]5, [(RW)5K](RW)5, [R5K]W7, and [DipR]5. Confocal microscopy was used to screen the peptides as a protein delivery system of model cargo proteins, green and red fluorescein proteins (GFP and RFP). Based on the confocal microscopy results, [WR]9 and [DipR]5 were found to be more efficient among all the peptides and were selected for further studies. [WR]9 (1-10 µM) + protein (GFP and RFP) physical mixture did not show high cytotoxicity (>90% viability) in triple-negative breast cancer cells (MDA-MB-231) after 24 h, while [DipR]5 (1-10 µM) physical mixture with GFP exhibited more than 81% cell viability. Confocal microscopy images revealed internalization of GFP and RFP in MDA-MB-231 cells using [WR]9 (2-10 µM) and [DipR]5 (1-10 µM). Fluorescence-activated cell sorting (FACS) analysis indicated that the cellular uptake of GFP was concentration-dependent in the presence of [WR]9 in MDA-MB-231 cells after 3 h of incubation at 37 °C. The concentration-dependent uptake of GFP and RFP was also observed in the presence of [DipR5] in SK-OV-3 and MDA-MB-231 cells after 3 h of incubation at 37 °C. FACS analysis indicated that the cellular uptake of GFP in the presence of [WR]9 was partially decreased by methyl-ß-cyclodextrin and nystatin as endocytosis inhibitors after 3 h of incubation in MDA-MB-231 cells, whereas nystatin and chlorpromazine as endocytosis inhibitors slightly reduced the uptake of GFP in the presence of [DipR]5 after 3 h of incubation in MDA-MB-231. [WR]9 was able to deliver therapeutically relevant proteins (Histone H2A) at different concentrations. These results provide insight into the use of amphiphilic cyclic peptides in the delivery of protein-related therapeutics.

4.
Pharmaceutics ; 14(5)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35631623

RESUMEN

Melanoma is the most fatal type of skin cancer and is notoriously resistant to chemotherapies. The response of melanoma to current treatments is difficult to predict. To combat these challenges, in this study, we utilize a small peptide to increase drug delivery to melanoma cells. A peptide library array was designed and screened using a peptide array-whole cell binding assay, which identified KK-11 as a novel human melanoma-targeting peptide. The peptide and its D-amino acid substituted analogue (VPWxEPAYQrFL or D-aa KK-11) were synthesized via a solid-phase strategy. Further studies using FITC-labeled KK-11 demonstrated dose-dependent uptake in human melanoma cells. D-aa KK-11 significantly increased the stability of the peptide, with 45.3% remaining detectable after 24 h with human serum incubation. Co-treatment of KK-11 with doxorubicin was found to significantly enhance the cytotoxicity of doxorubicin compared to doxorubicin alone, or sequential KK-11 and doxorubicin treatment. In vivo and ex vivo imaging revealed that D-aa KK-11 distributed to xenografted A375 melanoma tumors as early as 5 min and persisted up to 24 h post tail vein injection. When co-administered, D-aa KK-11 significantly enhanced the anti-tumor activity of a novel nNOS inhibitor (MAC-3-190) in an A375 human melanoma xenograft mouse model compared to MAC-3-190 treatment alone. No apparent systemic toxicities were observed. Taken together, these results suggest that KK-11 may be a promising human melanoma-targeted delivery vector for anti-melanoma cargo.

5.
BMC Complement Med Ther ; 22(1): 135, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35578215

RESUMEN

BACKGROUND: Trachyspermum ammi, commonly known as Ajwain, is a member of the Apiaceae family. It is a therapeutic herbal spice with diverse pharmacological properties, used in traditional medicine for various ailments. However, all previous studies were conducted using small molecule extracts, leaving the protein's bioactivity undiscovered. AIM: The current study aimed to demonstrate the cytotoxic activity of Ajwain non-specific lipid transfer protein (nsLTP1) in normal breast (MCF10A), breast cancer (MCF-7), and pancreatic cancer (AsPC-1) cell lines. Also, to evaluate its structural stability in human serum as well as at high temperature conditions. METHODS: The cytotoxic activity of Ajwain nsLTP1 was evaluated in MCF-7 and AsPC-1 cell lines using MTT assay. Annexin V-FITC and PI staining were used to detect the early apoptotic and late apoptotic cells. The role of nsLTP1 in inducing apoptosis was further studied by quantifying Bcl-2, Bax, Caspase-3, Survivin, EGFR, and VEGF genes expression using RT-PCR. CD spectroscopy analyzed the nsLTP1 conformational changes after thermal treatment for structure stability determination. The RP-HPLC was used to analyze the nsLTP1 degradation rate in human serum at different time intervals incubated at 37 °C. RESULTS: Ajwain nsLTP1 showed a potent cytotoxic effect in MCF-7 and AsPC-1. The IC50 value obtained in MCF-7 was 8.21 µM, while for AsPC-1 4.17 µM. The effect of nsLTP1 on stimulating apoptosis revealed that the proportions of apoptotic cells in both cell lines were relatively increased depending on the concentration. The apoptotic cells percentage at 20 µM was in MCF-7 71% (***P < 0.001) and AsPC-1 88% (***P < 0.001). These results indicate that nsLTP1 might efficaciously induce apoptosis in multiple types of cancerous cells. Genes expression in MCF-7 and AsPC-1 showed significant upregulation in Bax and Caspase-3 and downregulation in Bcl-2, Survivin, EGFR, and VEGF protein. The CD analysis of nsLTP1 showed a significant thermostable property. In serum, nsLTP1 showed a slow degradation rate, indicating high stability with a half-life of ~ 8.4 h. CONCLUSION: Our results revealed the potential anticancer activity of Ajwain nsLTP1 and its mechanism in inducing apoptosis. It further exhibited thermostable properties at high temperatures and in human serum, which suggested this protein as a promising anticancer agent.


Asunto(s)
Antineoplásicos , Apiaceae , Antineoplásicos/farmacología , Apiaceae/química , Proteínas Portadoras , Caspasa 3 , Receptores ErbB , Humanos , Semillas/química , Survivin , Factor A de Crecimiento Endotelial Vascular , Proteína X Asociada a bcl-2
6.
Cells ; 11(7)2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35406720

RESUMEN

A series of cyclic peptides, [(DipR)(WR)4], [(DipR)2(WR)3], [(DipR)3(WR)2], [(DipR)4(WR)], and [DipR]5, and their linear counterparts containing arginine (R) as positively charged residues and tryptophan (W) or diphenylalanine (Dip) as hydrophobic residues, were synthesized and evaluated for their molecular transporter efficiency. The in vitro cytotoxicity of the synthesized peptides was determined in human epithelial ovary adenocarcinoma cells (SK-OV-3), human lymphoblast peripheral blood cells (CCRF-CEM), human embryonic epithelial kidney healthy cells (HEK-293), human epithelial mammary gland adenocarcinoma cells (MDA-MB-468), pig epithelial kidney normal cells (LLC-PK1), and human epithelial fibroblast uterine sarcoma cells (MES-SA). A concentration of 5-10 µM and 3 h incubation were selected in uptake studies. The cellular uptake of a fluorescent-labeled phosphopeptide, stavudine, lamivudine, emtricitabine, and siRNA was determined in the presence of peptides via flow cytometry. Among the peptides, [DipR]5 (10 µM) was found to be the most efficient transporter and significantly improved the uptake of F'-GpYEEI, i.e., by approximately 130-fold after 3 h incubation in CCRF-CEM cells. Confocal microscopy further confirmed the improved delivery of fluorescent-labeled [DipR]5 (F'-[K(DipR)5]) alone and F'-GpYEEI in the presence of [DipR]5 in MDA-MB-231 cells. The uptake of fluorescent-labeled siRNA (F'-siRNA) in the presence of [DipR]5 with N/P ratios of 10 and 20 was found to be 30- and 50-fold higher, respectively, compared with the cells exposed to F'-siRNA alone. The presence of endocytosis inhibitors, i.e., nystatin, chlorpromazine, chloroquine, and methyl ß-cyclodextrin, did not completely inhibit the cellular uptake of F'-[K(DipR)5] alone or F'-GpYEEI in the presence of [DipR]5, suggesting that a combination of mechanisms contributes to uptake. Circular dichroism was utilized to determine the secondary structure, while transmission electron microscopy was used to evaluate the particle sizes and morphology of the peptides. The data suggest the remarkable membrane transporter property of [DipR]5 for improving the delivery of various small molecules and cell-impermeable negatively charged molecules (e.g., siRNA and phosphopeptide).


Asunto(s)
Adenocarcinoma , Péptidos de Penetración Celular , Aminoácidos , Animales , Línea Celular Tumoral , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Femenino , Células HEK293 , Humanos , Fenilalanina , Fosfopéptidos , ARN Interferente Pequeño , Porcinos
7.
Eur J Med Chem ; 226: 113836, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34537446

RESUMEN

Doxorubicin (Dox) is used for breast cancer, leukemia, and lymphoma treatment as an effective chemotherapeutic agent. However, Dox use is restricted due to inherent and acquired resistance and an 8-fold increase in the risk of potentially fatal cardiotoxicity. Hybrid cyclic-linear peptide [R5K]W7A and linear peptide R5KW7A were conjugated with Dox through a glutarate linker to afford [R5K]W7A-Dox and R5KW7A-Dox conjugates to generate Dox derivatives. Alternatively, [R5K]W7C was conjugated with Dox via a disulfide linker to generate [R5K]W7C-S-S-Dox conjugate, where S-S is a disulfide bond. Comparative antiproliferative assays between conjugates [R5K]W7A-Dox, [R5K]W7C-S-S-Dox, linear R5KW7A-Dox, the corresponding physical mixtures of the peptides, and Dox were performed in normal and cancer cells. [R5K]W7A-Dox conjugate was 2-fold more efficient than R5KW7A-Dox, and [R5K]W7C-S-S-Dox conjugates in inhibiting the cell proliferation of human leukemia cells (CCRF-CEM). Therefore, hybrid cyclic-linear [R5K]W7A-Dox conjugate was selected for further studies and inhibited the cell viability of CCRF-CEM (84%), ovarian adenocarcinoma (SK-OV-3, 39%), and gastric carcinoma (AGS, 73%) at a concentration of 5 µM after 72 h of incubation, which was comparable to Dox (5 µM) efficacy (CCRF-CEM (85%), SK-OV-3 (33%), and AGS (87%)). While [R5K]W7A-Dox had a significant effect on the viability of cancer cells, it exhibited minimal cytotoxicity to normal kidney (LLC-PK1, 5-7%) and heart cells (H9C2, <9%) at concentrations of 5-10 µM (compared to free Dox at 5 µM that reduced the viability of kidney and heart cells by 85% and 44%, respectively). The fluorescence microscopy images were consistent with the cytotoxicity studies, indicating minimal uptake of the cyclic-linear [R5K]W7A-Dox (5 µM) in H9C2 cells. In comparison, Dox (5 µM) showed significant uptake, reduced cell viability, and changed the morphology of the cells after 24 h. [R5K]W7A-Dox showed 16-fold and 9.5-fold higher activity against Dox-resistant cells MDA231R and MES-SA/MX2 (lethal dose for 50% cell death or LC50 of 2.3 and 4.3 µM, respectively) compared to free Dox (LC50 of 36-41 µM, respectively). These data, along with the results obtained from the cell viability tests, indicate comparable efficiency of [R5K]W7A-Dox to free Dox in leukemia, ovarian, and gastric cancer cells, significantly reduced toxicity in normal kidney LLC-PK1 and heart H9C2 cells, and significantly higher efficiency in Dox-resistant cells. A number of endocytosis inhibitors did not affect the cellular uptake of [R5K]W7A-Dox.


Asunto(s)
Antibióticos Antineoplásicos/efectos adversos , Doxorrubicina/efectos adversos , Diseño de Fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Péptidos Cíclicos/farmacología , Antibióticos Antineoplásicos/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Doxorrubicina/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...