Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
JCI Insight ; 9(6)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38516889

RESUMEN

Here, we used digital spatial profiling (DSP) to describe the glomerular transcriptomic signatures that may characterize the complex molecular mechanisms underlying progressive kidney disease in Alport syndrome, focal segmental glomerulosclerosis, and membranous nephropathy. Our results revealed significant transcriptional heterogeneity among diseased glomeruli, and this analysis showed that histologically similar glomeruli manifested different transcriptional profiles. Using glomerular pathology scores to establish an axis of progression, we identified molecular pathways with progressively decreased expression in response to increasing pathology scores, including signal recognition particle-dependent cotranslational protein targeting to membrane and selenocysteine synthesis pathways. We also identified a distinct signature of upregulated and downregulated genes common to all the diseases investigated when compared with nondiseased tissue from nephrectomies. These analyses using DSP at the single-glomerulus level could help to increase insight into the pathophysiology of kidney disease and possibly the identification of biomarkers of disease progression in glomerulopathies.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Nefritis Hereditaria , Insuficiencia Renal Crónica , Humanos , Transcriptoma , Glomérulos Renales/patología , Glomeruloesclerosis Focal y Segmentaria/patología , Nefritis Hereditaria/patología , Insuficiencia Renal Crónica/metabolismo
2.
Kidney Int ; 105(2): 281-292, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37923131

RESUMEN

Lesion scores on procurement donor biopsies are commonly used to guide organ utilization for deceased-donor kidneys. However, frozen sections present challenges for histological scoring, leading to inter- and intra-observer variability and inappropriate discard. Therefore, we constructed deep-learning based models to recognize kidney tissue compartments in hematoxylin & eosin-stained sections from procurement needle biopsies performed nationwide in years 2011-2020. To do this, we extracted whole-slide abnormality features from 2431 kidneys and correlated with pathologists' scores and transplant outcomes. A Kidney Donor Quality Score (KDQS) was derived and used in combination with recipient demographic and peri-transplant characteristics to predict graft loss or assist organ utilization. The performance on wedge biopsies was additionally evaluated. Our model identified 96% and 91% of normal/sclerotic glomeruli respectively; 94% of arteries/arterial intimal fibrosis; 90% of tubules. Whole-slide features of Sclerotic Glomeruli (GS)%, Arterial Intimal Fibrosis (AIF)%, and Interstitial Space Abnormality (ISA)% demonstrated strong correlations with corresponding pathologists' scores of all 2431 kidneys, but had superior associations with post-transplant estimated glomerular filtration rates in 2033 and graft loss in 1560 kidneys. The combination of KDQS and other factors predicted one- and four-year graft loss in a discovery set of 520 kidneys and a validation set of 1040 kidneys. By using the composite KDQS of 398 discarded kidneys due to "biopsy findings", we suggest that if transplanted, 110 discarded kidneys could have had similar survival to that of other transplanted kidneys. Thus, our composite KDQS and survival prediction models may facilitate risk stratification and organ utilization while potentially reducing unnecessary organ discard.


Asunto(s)
Aprendizaje Profundo , Trasplante de Riñón , Obtención de Tejidos y Órganos , Humanos , Trasplante de Riñón/efectos adversos , Estudios Retrospectivos , Selección de Donante , Riñón/patología , Donantes de Tejidos , Biopsia , Fibrosis , Supervivencia de Injerto
3.
Am J Transplant ; 24(3): 436-447, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38152017

RESUMEN

The objective of this study was to validate the performance of Tutivia, a peripheral blood gene expression signature, in predicting early acute rejection (AR) post-kidney transplant. Recipients of living or deceased donor kidney transplants were enrolled in a nonrandomized, prospective, global, and observational study (NCT04727788). The main outcome was validation of the area under the curve (AUC) of Tutivia vs serum creatinine at biopsy alone, or Tutivia + serum creatinine at biopsy. Of the 151 kidney transplant recipients, the mean cohort age was 53 years old, and 64% were male. There were 71% (107/151) surveillance/protocol biopsies and 29% (44/151) for-cause biopsies, with a 31% (47/151) overall rejection rate. Tutivia (AUC 0.69 [95% CI: 0.59-0.77]) and AUC of Tutivia + creatinine at biopsy (0.68 [95% CI: 0.59-0.77]) were greater than the AUC of creatinine at biopsy alone (0.51.4 [95% CI: 0.43-0.60]). Applying a model cut-off of 50 (scale 0-100) generated a high- and low-risk category for AR with a negative predictive value of 0.79 (95% CI: 0.71-0.86), a positive predictive value of 0.60 (95% CI: 0.45-0.74), and an odds ratio of 5.74 (95% CI: 2.63-12.54). Tutivia represents a validated noninvasive approach for clinicians to accurately predict early AR, beyond the current standard of care.


Asunto(s)
Trasplante de Riñón , Humanos , Masculino , Persona de Mediana Edad , Femenino , Trasplante de Riñón/efectos adversos , Estudios Prospectivos , Creatinina , Rechazo de Injerto/diagnóstico , Rechazo de Injerto/etiología , Biomarcadores/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , ARN
4.
Bioengineering (Basel) ; 10(9)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37760142

RESUMEN

Transplant pathology plays a critical role in ensuring that transplanted organs function properly and the immune systems of the recipients do not reject them. To improve outcomes for transplant recipients, accurate diagnosis and timely treatment are essential. Recent advances in artificial intelligence (AI)-empowered digital pathology could help monitor allograft rejection and weaning of immunosuppressive drugs. To explore the role of AI in transplant pathology, we conducted a systematic search of electronic databases from January 2010 to April 2023. The PRISMA checklist was used as a guide for screening article titles, abstracts, and full texts, and we selected articles that met our inclusion criteria. Through this search, we identified 68 articles from multiple databases. After careful screening, only 14 articles were included based on title and abstract. Our review focuses on the AI approaches applied to four transplant organs: heart, lungs, liver, and kidneys. Specifically, we found that several deep learning-based AI models have been developed to analyze digital pathology slides of biopsy specimens from transplant organs. The use of AI models could improve clinicians' decision-making capabilities and reduce diagnostic variability. In conclusion, our review highlights the advancements and limitations of AI in transplant pathology. We believe that these AI technologies have the potential to significantly improve transplant outcomes and pave the way for future advancements in this field.

7.
Case Rep Pulmonol ; 2023: 1461011, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37095760

RESUMEN

Hydralazine is a vasodilator used for the management of hypertension, heart failure, and hypertensive emergencies in pregnancy. It has been implicated in the causation of drug-induced lupus erythematosus (DLE) and rarely with ANCA-associated vasculitis (AAV), which may present as a pulmonary-renal syndrome and be rapidly fatal. Herein, we describe a case of hydralazine-associated AAV presenting as acute kidney injury with the use of early bronchoalveolar lavage (BAL) with serial aliquots to aid with diagnosis. Our case highlights how, in the correct clinical setting, BAL can act as a rapid diagnostic test to help guide quicker treatment to allow for better patient outcomes.

8.
Nat Metab ; 5(4): 607-625, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37024752

RESUMEN

The lifetime risk of kidney disease in people with diabetes is 10-30%, implicating genetic predisposition in the cause of diabetic kidney disease (DKD). Here we identify an expression quantitative trait loci (QTLs) in the cis-acting regulatory region of the xanthine dehydrogenase, or xanthine oxidoreductase (Xor), a binding site for C/EBPß, to be associated with diabetes-induced podocyte loss in DKD in male mice. We examine mouse inbred strains that are susceptible (DBA/2J) and resistant (C57BL/6J) to DKD, as well as a panel of recombinant inbred BXD mice, to map QTLs. We also uncover promoter XOR orthologue variants in humans associated with high risk of DKD. We introduced the risk variant into the 5'-regulatory region of XOR in DKD-resistant mice, which resulted in increased Xor activity associated with podocyte depletion, albuminuria, oxidative stress and damage restricted to the glomerular endothelium, which increase further with type 1 diabetes, high-fat diet and ageing. Therefore, differential regulation of Xor contributes to phenotypic consequences with diabetes and ageing.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Masculino , Ratones , Animales , Nefropatías Diabéticas/genética , Xantina Deshidrogenasa/genética , Xantina Deshidrogenasa/metabolismo , Predisposición Genética a la Enfermedad , Ratones Endogámicos DBA , Ratones Endogámicos C57BL
9.
JCI Insight ; 8(7)2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36853804

RESUMEN

Despite recent progress in the identification of mediators of podocyte injury, mechanisms underlying podocyte loss remain poorly understood, and cell-specific therapy is lacking. We previously reported that kidney and brain expressed protein (KIBRA), encoded by WWC1, promotes podocyte injury in vitro through activation of the Hippo signaling pathway. KIBRA expression is increased in the glomeruli of patients with focal segmental glomerulosclerosis, and KIBRA depletion in vivo is protective against acute podocyte injury. Here, we tested the consequences of transgenic podocyte-specific WWC1 expression in immortalized human podocytes and in mice, and we explored the association between glomerular WWC1 expression and glomerular disease progression. We found that KIBRA overexpression in immortalized human podocytes promoted cytoplasmic localization of Yes-associated protein (YAP), induced actin cytoskeletal reorganization, and altered focal adhesion expression and morphology. WWC1-transgenic (KIBRA-overexpressing) mice were more susceptible to acute and chronic glomerular injury, with evidence of YAP inhibition in vivo. Of clinical relevance, glomerular WWC1 expression negatively correlated with renal survival among patients with primary glomerular diseases. These findings highlight the importance of KIBRA/YAP signaling to the regulation of podocyte structural integrity and identify KIBRA-mediated injury as a potential target for podocyte-specific therapy in glomerular disease.


Asunto(s)
Enfermedades Renales , Podocitos , Humanos , Ratones , Animales , Podocitos/metabolismo , Regulación hacia Arriba , Glomérulos Renales/metabolismo , Transducción de Señal , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Progresión de la Enfermedad , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
10.
Am J Physiol Renal Physiol ; 324(2): F138-F151, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36475868

RESUMEN

Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites with biological effects, including antiapoptotic, anti-inflammatory, and antifibrotic functions. Soluble epoxide hydrolase (sEH)-mediated hydrolysis of EETs to dihydroxyeicosatrienoic acids (DHETs) attenuates these effects. Recent studies have demonstrated that inhibition of sEH prevents renal tubulointerstitial fibrosis and inflammation in the chronic kidney disease model. Given the pathophysiological role of the EET pathway in chronic kidney disease, we investigated if administration of EET regioisomers and/or sEH inhibition will promote antifibrotic and renoprotective effects in renal fibrosis following unilateral ureteral obstruction (UUO). EETs administration abolished tubulointerstitial fibrogenesis, as demonstrated by reduced fibroblast activation and collagen deposition after UUO. The inflammatory response was prevented as demonstrated by decreased neutrophil and macrophage infiltration and expression of cytokines in EET-administered UUO kidneys. EET administration and/or sEH inhibition significantly reduced M1 macrophage markers, whereas M2 macrophage markers were highly upregulated. Furthermore, UUO-induced oxidative stress, tubular injury, and apoptosis were all downregulated following EET administration. Combined EET administration and sEH inhibition, however, had no additive effect in attenuating inflammation and renal interstitial fibrogenesis after UUO. Taken together, our findings provide a mechanistic understanding of how EETs prevent kidney fibrogenesis during obstructive nephropathy and suggest EET treatment as a potential therapeutic strategy to treat fibrotic diseases.NEW & NOTEWORTHY Epoxyeicosatrienoic acids (EETs) are cytochrome P-450-dependent antihypertensive and anti-inflammatory derivatives of arachidonic acid, which are highly abundant in the kidney and considered renoprotective. We found that EET administration and/or soluble epoxide hydrolase inhibition significantly attenuates oxidative stress, renal cell death, inflammation, macrophage differentiation, and fibrogenesis following unilateral ureteral obstruction. Our findings provide a mechanistic understanding of how EETs prevent kidney fibrogenesis during obstructive nephropathy and suggest that EET treatment may be a potential therapeutic strategy to treat fibrotic diseases.


Asunto(s)
Insuficiencia Renal Crónica , Obstrucción Ureteral , Humanos , Epóxido Hidrolasas , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/tratamiento farmacológico , Riñón/metabolismo , Eicosanoides/metabolismo , Inflamación , Ácidos Araquidónicos , Ácido 8,11,14-Eicosatrienoico
12.
Kidney Int ; 102(6): 1291-1304, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36108806

RESUMEN

The pathogenesis of diabetic kidney disease (DKD) involves multifactorial processes that converge to initiate and advance the disease. Although DKD is not typically classified as an inflammatory glomerular disease, mounting evidence supports the involvement of kidney inflammation as a key contributor in DKD pathogenesis, particularly through macrophages. However, detailed identification and corresponding phenotypic changes of macrophages in DKD remain poorly understood. To capture the gene expression changes in specific macrophage cell subsets in early DKD, we performed single-cell transcriptomic analysis of CD45-enriched kidney immune cells from type 1 diabetic OVE26 mice at two time points during the disease development. We also undertook a focused analysis of mononuclear phagocytes (macrophages and dendritic cells). Our results show increased resident and infiltrating macrophage subsets in the kidneys of mice with diabetes over time, with heightened expression of pro-inflammatory or anti-inflammatory genes in a subset-specific manner. Further analysis of macrophage polarization states in each subset in the kidneys showed changes consistent with the continuum of activation and differentiation states, with gene expression tending to shift toward undifferentiated phenotypes but with increased M1-like inflammatory phenotypes over time. By deconvolution analysis of RNAseq samples and by immunostaining of biopsies from patients with DKD, we further confirmed a differential expression of select genes in specific macrophage subsets essentially recapitulating the studies in mice. Thus, our study provides a comprehensive analysis of macrophage transcriptomic profiles in early DKD that underscores the dynamic macrophage phenotypes in disease progression.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Riñón/patología , Glomérulos Renales/patología , Activación de Macrófagos , Macrófagos/metabolismo , Diabetes Mellitus/metabolismo
13.
Clin Transplant ; 36(12): e14802, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36069577

RESUMEN

BACKGROUND: Allograft biopsies with lesions of Antibody-Mediated Rejection (ABMR) with Microvascular Inflammation (MVI) have shown heterogeneous etiologies and outcomes. METHODS: To examine factors associated with outcomes in biopsies that meet histologic ABMR criteria, we retrospectively evaluated for-cause biopsies at our center between 2011 and 2017. We included biopsies that met the diagnosis of ABMR by histology, along with simultaneous evaluation for anti-Human Leukocyte Antigen (HLA) donor-specific antibodies (DSA). We evaluated death-censored graft loss (DCGL) and used a principal component analysis (PCA) approach to identify key predictors of outcomes. RESULTS: Out of the histologic ABMR cohort (n = 118), 70 were DSA-positive ABMR, while 48 had no DSA. DSA(+)ABMR were younger and more often female recipients. DSA(+)ABMR occurred significantly later post-transplant than DSA(-)ABMR suggesting time-dependence. DSA(+)ABMR had higher inflammatory scores (i,t), chronicity scores (ci, ct) and tended to have higher MVI scores. Immunodominance of DQ-DSA in DSA(+)ABMR was associated with higher i+t scores. Clinical/histologic factors significantly associated with DCGL after biopsy were inputted into the PCA. Principal component-1 (PC-1), which contributed 34.8% of the variance, significantly correlated with time from transplantation to biopsy, ci/ct scores and DCGL. In the PCA analyses, i, t scores, DQ-DSA, and creatinine at biopsy retained significant correlations with GL-associated PCs. CONCLUSIONS: Time from transplantation to biopsy plays a major role in the prognosis of biopsies with histologic ABMR and MVI, likely due to ongoing chronic allograft injury over time.


Asunto(s)
Trasplante de Riñón , Humanos , Femenino , Estudios Retrospectivos , Trasplante de Riñón/efectos adversos , Anticuerpos , Pronóstico , Inflamación , Biopsia , Rechazo de Injerto/diagnóstico , Rechazo de Injerto/etiología , Isoanticuerpos
14.
BMC Nephrol ; 23(1): 253, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842573

RESUMEN

BACKGROUND: Alport syndrome is a hereditary kidney disease characterized by hematuria and proteinuria. Although there have been reports of autosomal dominant COL4A4 variants, this is likely an underdiagnosed condition. Improved access to affordable genetic testing has increased the diagnosis of Alport syndrome. As genetic testing becomes ubiquitous, it is imperative that clinical nephrologists understand the benefits and challenges associated with clinical genetic testing. CASE PRESENTATION: We present a family of Mexican descent with a heterozygous COL4A4 variant (c.5007delC, ClinVar accession numbers: SCV001580980.2, SCV001993731.1) not previously discussed in detail in the literature. The proband received a biopsy diagnosis suggestive of Fabry disease 18 years after she first developed hematuria and progressed to chronic kidney disease stage III. One year later, the proband was provisionally diagnosed with Alport syndrome after a variant of uncertain significance in the COL4A4 gene was identified following targeted family variant testing of her daughter. Upon review of the medical histories of the proband's children and niece, all but one had the same variant. Of the four with the variant, three display clinical symptoms of hematuria, and/or proteinuria. The youngest of the four, only months old, has yet to exhibit clinical symptoms. Despite these findings there was a considerable delay in synthesizing this data, as patients were tested in different commercial genetic testing laboratories. Subsequently, understanding this family's inheritance pattern, family history, and clinical symptoms, as well as the location of the COL4A4 variant resulted in the upgrade of the variant's classification. Although the classification of this variant varied among different clinical genetic testing laboratories, the consensus was that this variant is likely pathogenic. CONCLUSIONS: This COL4A4 variant (c.5007delC) not yet discussed in detail in the literature is associated with Alport syndrome. The inheritance pattern is suggestive of autosomal dominant inheritance. This report highlights the intricacies of variant interpretation and classification, the siloed nature of commercial genetic testing laboratories, and the importance of a thorough family history for proper variant interpretation. Additionally, the cases demonstrate the varied clinical presentations of Alport syndrome and suggest the utility of early screening, diagnosis, monitoring, and treatment.


Asunto(s)
Colágeno Tipo IV , Nefritis Hereditaria , Autoantígenos/genética , Niño , Colágeno Tipo IV/genética , Femenino , Hematuria/genética , Humanos , Nefritis Hereditaria/diagnóstico , Nefritis Hereditaria/genética , Nefritis Hereditaria/patología , Linaje , Proteinuria
15.
J Investig Med High Impact Case Rep ; 10: 23247096221093888, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35466742

RESUMEN

We report a case of dialysis dependence in a patient with COVID-19-associated nephropathy (COVAN) who had minimal respiratory manifestations. A 25-year-old man with a history of multiple sclerosis in remission presented with mild dyspnea due to COVID-19 pneumonia and was found to have rapidly worsening kidney function. He only required nasal cannula and was able to be weaned off within a few days. Despite having only mild respiratory disease, his kidney function worsened and urgent hemodialysis was started for hyperkalemia and uremic encephalopathy. Kidney biopsy demonstrated collapsing glomerulopathy due to COVID-19 with moderate interstitial fibrosis and tubular atrophy. His kidney function did not recover, and he unfortunately now has been dependent on hemodialysis for over 3 months. Multiple case reports have described COVAN causing dialysis dependence, but to our knowledge this is the first reported case of COVAN causing dialysis dependence in a patient with such mild respiratory disease. Currently the indications for intensive COVID-19 therapies are based on oxygen requirements. This case demonstrates that the oxygen requirement may not fully reflect the severity of COVID-19 and raises the question of whether these therapies should be considered in patients with COVAN.


Asunto(s)
COVID-19 , Enfermedades Renales , Adulto , COVID-19/complicaciones , Femenino , Humanos , Enfermedades Renales/patología , Masculino , Oxígeno , Diálisis Renal
16.
J Nephrol ; 35(3): 735-743, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34626364

RESUMEN

BACKGROUND: Acute kidney injury is common in patients with COVID-19, however mechanisms of kidney injury remain unclear. Since cytokine storm is likely a cause of AKI and glomerular disease, we investigated the two major transcription factors, STAT3 and NF-kB, which are known to be activated by cytokines. METHODS: This is an observational study of the postmortem kidneys of 50 patients who died with COVID-19 in the Mount Sinai Hospital during the first pandemic surge. All samples were reviewed under light microscopy, electron microscopy, and immunofluorescence by trained renal pathologists. In situ hybridization evaluation for SARS-CoV-2 and immunostaining of transcription factors STAT3 and NF-kB were performed. RESULTS: Consistent with previous findings, acute tubular injury was the major pathological finding, together with global or focal glomerulosclerosis. We were not able to detect SARS-CoV-2 in kidney cells. ACE2 expression was reduced in the tubular cells of patients who died with COVID-19 and did not co-localize with TMPRSS2. SARS-CoV-2 was identified occasionally in the mononuclear cells in the peritubular capillary and interstitium. STAT3 phosphorylation at Tyr705 was increased in 2 cases in the glomeruli and in 3 cases in the tubulointerstitial compartments. Interestingly, STAT3 phosphorylation at Ser727 increased in 9 cases but only in the tubulointerstitial compartment. A significant increase in NF-kB phosphorylation at Ser276 was also found in the tubulointerstitium of the two patients with increased p-STAT3 (Tyr705). CONCLUSIONS: Our findings suggest that, instead of tyrosine phosphorylation, serine phosphorylation of STAT3 is commonly activated in the kidney of patients with COVID-19.


Asunto(s)
Lesión Renal Aguda , COVID-19 , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/patología , COVID-19/complicaciones , Humanos , Riñón/patología , FN-kappa B , SARS-CoV-2 , Factor de Transcripción STAT3 , Transducción de Señal
17.
Kidney Int ; 101(1): 131-136, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34555393

RESUMEN

Analysis of the transcriptional profile of graft biopsies represents a promising strategy to study T cell-mediated-rejection (TCMR), also known as acute cellular rejection. However, bulk RNA sequencing of graft biopsies may not capture the focal nature of acute rejection. Herein, we used the whole exome GeoMX Digital Space Profiling platform to study five tubular and three glomerular regions of interest in the kidney graft biopsy from a patient with a chronic-active TCMR episode and in analogous areas from two different normal kidney control biopsies. All kidney sections were from paraffin blocks. Overall, inflammatory genes were significantly upregulated in the tubular areas of the TCMR biopsy and showed an enrichment for gene-ontology terms associated with T-cell activation, differentiation, and proliferation. Enrichment analysis of the 100 genes with the highest coefficient of variation across the TCMR tubular regions of interest revealed that these highly variable genes are involved in kidney development and injury and interestingly do not associate with the 2019 Banff classification pathology scores within the individual regions of interest. Spatial transcriptomics allowed us to unravel a previously unappreciated variability across different areas of the TCMR biopsy related to the graft response to the alloimmune attack, rather than to the immune cells. Thus, our approach has the potential to decipher clinically relevant, new pathogenic mechanisms, and therapeutic targets in acute cellular rejection and other kidney diseases with a focal nature.


Asunto(s)
Trasplante de Riñón , Linfocitos T , Aloinjertos/patología , Biopsia , Rechazo de Injerto , Humanos , Riñón/patología , Trasplante de Riñón/efectos adversos
18.
Kidney Int ; 101(1): 106-118, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34562503

RESUMEN

Progression of glomerulosclerosis is associated with loss of podocytes with subsequent glomerular tuft instability. It is thought that a diminished number of podocytes may be able to preserve tuft stability through cell hypertrophy associated with cell cycle reentry. At the same time, reentry into the cell cycle risks podocyte detachment if podocytes cross the G1/S checkpoint and undergo abortive cytokinesis. In order to study cell cycle dynamics during chronic kidney disease (CKD) development, we used a FUCCI model (fluorescence ubiquitination-based cell cycle indicator) of mice with X-linked Alport Syndrome. This model exhibits progressive CKD and expresses fluorescent reporters of cell cycle stage exclusively in podocytes. With the development of CKD, an increasing fraction of podocytes in vivo were found to be in G1 or later cell cycle stages. Podocytes in G1 and G2 were hypertrophic. Heterozygous female mice, with milder manifestations of CKD, showed G1 fraction numbers intermediate between wild-type and male Alport mice. Proteomic analysis of podocytes in different cell cycle phases showed differences in cytoskeleton reorganization and metabolic processes between G0 and G1 in disease. Additionally, in vitro experiments confirmed that damaged podocytes reentered the cell cycle comparable to podocytes in vivo. Importantly, we confirmed the upregulation of PDlim2, a highly expressed protein in podocytes in G1, in a patient with Alport Syndrome, confirming our proteomics data in the human setting. Thus, our data showed that in the Alport model of progressive CKD, podocyte cell cycle distribution is altered, suggesting that cell cycle manipulation approaches may have a role in the treatment of various progressive glomerular diseases characterized by podocytopenia.


Asunto(s)
Nefritis Hereditaria , Podocitos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Ciclo Celular , Progresión de la Enfermedad , Femenino , Humanos , Proteínas con Dominio LIM/metabolismo , Masculino , Ratones , Proteínas de Microfilamentos/metabolismo , Nefritis Hereditaria/genética , Nefritis Hereditaria/metabolismo , Podocitos/metabolismo , Proteómica
19.
Kidney Int ; 101(2): 288-298, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34757124

RESUMEN

Interstitial fibrosis, tubular atrophy, and inflammation are major contributors to kidney allograft failure. Here we sought an objective, quantitative pathological assessment of these lesions to improve predictive utility and constructed a deep-learning-based pipeline recognizing normal vs. abnormal kidney tissue compartments and mononuclear leukocyte infiltrates. Periodic acid- Schiff stained slides of transplant biopsies (60 training and 33 testing) were used to quantify pathological lesions specific for interstitium, tubules and mononuclear leukocyte infiltration. The pipeline was applied to the whole slide images from 789 transplant biopsies (478 baseline [pre-implantation] and 311 post-transplant 12-month protocol biopsies) in two independent cohorts (GoCAR: 404 patients, AUSCAD: 212 patients) of transplant recipients to correlate composite lesion features with graft loss. Our model accurately recognized kidney tissue compartments and mononuclear leukocytes. The digital features significantly correlated with revised Banff 2007 scores but were more sensitive to subtle pathological changes below the thresholds in the Banff scores. The Interstitial and Tubular Abnormality Score (ITAS) in baseline samples was highly predictive of one-year graft loss, while a Composite Damage Score in 12-month post-transplant protocol biopsies predicted later graft loss. ITASs and Composite Damage Scores outperformed Banff scores or clinical predictors with superior graft loss prediction accuracy. High/intermediate risk groups stratified by ITASs or Composite Damage Scores also demonstrated significantly higher incidence of estimated glomerular filtration rate decline and subsequent graft damage. Thus, our deep-learning approach accurately detected and quantified pathological lesions from baseline or post-transplant biopsies and demonstrated superior ability for prediction of post-transplant graft loss with potential application as a prevention, risk stratification or monitoring tool.


Asunto(s)
Aprendizaje Profundo , Trasplante de Riñón , Biopsia , Rechazo de Injerto/patología , Supervivencia de Injerto , Humanos , Riñón/patología , Trasplante de Riñón/efectos adversos
20.
JCI Insight ; 6(19)2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34473647

RESUMEN

Herein, we report that Shroom3 knockdown, via Fyn inhibition, induced albuminuria with foot process effacement (FPE) without focal segmental glomerulosclerosis (FSGS) or podocytopenia. Interestingly, knockdown mice had reduced podocyte volumes. Human minimal change disease (MCD), where podocyte Fyn inactivation was reported, also showed lower glomerular volumes than FSGS. We hypothesized that lower glomerular volume prevented the progression to podocytopenia. To test this hypothesis, we utilized unilateral and 5/6th nephrectomy models in Shroom3-KD mice. Knockdown mice exhibited less glomerular and podocyte hypertrophy after nephrectomy. FYN-knockdown podocytes had similar reductions in podocyte volume, implying that Fyn was downstream of Shroom3. Using SHROOM3 or FYN knockdown, we confirmed reduced podocyte protein content, along with significantly increased phosphorylated AMPK, a negative regulator of anabolism. AMPK activation resulted from increased cytoplasmic redistribution of LKB1 in podocytes. Inhibition of AMPK abolished the reduction in glomerular volume and induced podocytopenia in mice with FPE, suggesting a protective role for AMPK activation. In agreement with this, treatment of glomerular injury models with AMPK activators restricted glomerular volume, podocytopenia, and progression to FSGS. Glomerular transcriptomes from MCD biopsies also showed significant enrichment of Fyn inactivation and Ampk activation versus FSGS glomeruli. In summary, we demonstrated the important role of AMPK in glomerular volume regulation and podocyte survival. Our data suggest that AMPK activation adaptively regulates glomerular volume to prevent podocytopenia in the context of podocyte injury.


Asunto(s)
Adenilato Quinasa/metabolismo , Glomérulos Renales/metabolismo , Proteínas de Microfilamentos/genética , Síndrome Nefrótico/genética , Podocitos/metabolismo , Adenilato Quinasa/antagonistas & inhibidores , Adolescente , Adulto , Anciano , Albuminuria/genética , Animales , Tamaño de la Célula , Supervivencia Celular/genética , Niño , Preescolar , Femenino , Técnicas de Silenciamiento del Gen , Glomerulonefritis Membranosa/genética , Glomerulonefritis Membranosa/patología , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Hipertrofia , Lactante , Glomérulos Renales/patología , Masculino , Ratones , Persona de Mediana Edad , Nefrectomía , Nefrosis Lipoidea/genética , Nefrosis Lipoidea/patología , Síndrome Nefrótico/patología , Podocitos/patología , Modelos de Riesgos Proporcionales , Proteínas Proto-Oncogénicas c-fyn/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...