Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Breast Cancer Res Treat ; 204(1): 133-149, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38057687

RESUMEN

PURPOSE: Breast cancer is one of the leading types of cancer diagnosed in women. Despite the improvements in chemotherapeutic cure strategies, drug resistance is still an obstacle leading to disease aggressiveness. The small non-coding RNA molecules, miRNAs, have been implicated recently to be involved as regulators of gene expression through the silencing of mRNA targets that contributed to several cellular processes related to cancer metastasis. Hence, the present study aimed to investigate the beneficial role and mechanism of miRNA-34a-based gene therapy as a novel approach for conquering drug resistance mediated by ATP-binding cassette (ABC) transporters in breast cancer cells, besides exploring the associated invasive behaviors. MATERIAL AND METHODS: Bioinformatics tools were used to predict miRNA ABC transporter targets by tracking the ABC transporter pathway. After the establishment of drug-resistant breast cancer MCF-7 and MDA-MB-231 sublines, cells were transfected with the mimic or inhibitor of miRNA-34a-5p. The quantitative expression of genes involved in drug resistance was performed by QRT-PCR, and the exact ABC transporter target specification interaction was confirmed by dual-luciferase reporter assay. Furthermore, flow cytometric analysis was utilized to determine the ability of miRNA-34a-treated cells against doxorubicin uptake and accumulation in cell cycle phases. The spreading capability was examined by colony formation, migration, and wound healing assays. The apoptotic activity was estimated as well. RESULTS: Our findings firstly discovered the mechanism of miRNA-34a-5p restoration as an anti-drug-resistant molecule that highly significantly attenuates the expression of ABCC1 via the direct targeting of its 3'- untranslated regions in resistant breast cancer cell lines, with a significant increase of doxorubicin influx by MDA-MB-231/Dox-resistant cells. Additionally, the current data validated a significant reduction of metastatic potentials upon miRNA-34a-5p upregulation in both types of breast cancer-resistant cells. CONCLUSION: The ectopic expression of miRNA-34a ameliorates the acquired drug resistance and the migration properties that may eventually lead to improved clinical strategies and outcomes for breast cancer patients. Additionally, miRNA-34a could be monitored as a diagnostic/prognostic biomarker for resistant conditions.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Células MCF-7 , MicroARNs/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/uso terapéutico
2.
Arch Med Res ; 54(6): 102860, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37499571

RESUMEN

BACKGROUND: Besides its main role in the control of blood cholesterol, PCSK9 has a role in the regulation of neuronal development and apoptosis. We suggest, for the first time, the possible involvement of PCSK9 in autism. METHOD: In this case-control study, Sanger sequencing was used to analyze sequence variations in the PCSK9 gene exons and their flanking intronic sequences. ELISA assay was used to determine the plasma concentration of PCSK9. The methylation percentage of the PCSK9 gene promoter was assessed by methylation-specific PCR (MSP). RESULTS: Forty-three variants were found; out of them, seven showed differential frequency between patients and controls. rs.45448095, rs.45613943, rs.630431, rs.529500286, and rs.45439391 are risk factors for autism, while rs.11800231 and rs.483462 are protective variants. The concentration of plasma PCSK9 protein was significantly elevated and the methylation percentage of PCSK9 gene promoter was significantly lower in cases than in controls (p <0.001 and = 0.002, respectively). ROC curve analysis identified an area under the curve (AUC) of 0.915 for plasma protein concentration and 0.693 for percent gene promoter methylation. In addition, two new variants were identified (g.23809C>T in intron 11 and g.24071T>G in 3' UTR). CONCLUSION: This is the first study to investigate the correlation between PCSK9 protein and autism and suggests the potential involvement of PCSK9 as one of the susceptibility genes for autism. Further studies with a larger number of subjects are recommended.


Asunto(s)
Trastorno Autístico , Proproteína Convertasa 9 , Humanos , Proproteína Convertasa 9/genética , Estudios de Casos y Controles , Metilación , Trastorno Autístico/genética
3.
J Autism Dev Disord ; 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37014460

RESUMEN

Autism is associated with genomic instability, which is regulated by telomere length (TL) and index of global methylation (LINE-1). This study will determine relative TL (RTL) and LINE-1 methylation percentage for 69 patients and 33 control subjects to evaluate their potential role as biomarkers for autism. The results displayed a significant decrease of both RTL and LINE-1 methylation in autistic cases relative to controls (P < 0.001). Analysis of receiver operating characteristics curve revealed that both of RTL and LINE-1 methylation percentage have the ability to serve as autism biomarkers (area under the curve = 0.817 and 0.889, respectively). The statistical analysis revealed positive correlation between the two biomarkers (correlation coefficient = 0.439 and P < 0.001).

4.
Arch Virol ; 168(3): 95, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36840831

RESUMEN

Epigenetic modifications play a significant role in the host's immune response to viral infection. Two epigenetic events, DNA methylation and histone acetylation, are crucial for modifying the chromatin architecture and the location of regulatory elements such as promoters and enhancers. In this case-control study, we evaluated the expression of genes involved in epigenetic machinery (DNMT1, DNMT3A, DNMT3B, HDAC2, and HDAC3) and the degree of methylation of promoters of immune response genes (IFITM1/2/3, TLR3/4, TNF-α, NF-κB, and MYD88) as well as global methylation (LINE-1 and global 5-mC) in blood samples from 120 COVID-19 patients (30 mild, 30 moderate, 30 severe, and 30 critical) and 30 healthy subjects without COVID-19. In contrast to previous reports, DNMT3A and DNMT3B expression was found to be significantly downregulated in COVID-19 cases, whereas DNMT1, HDAC2, and HDAC3 expression did not change. DNMT1 and DNMT3A were negatively correlated with COVID-19 severity. Critically ill patients had lower HDAC3 expression levels. TLR4 and TNF-α had increased promoter methylation, whereas IFITM1/2/3, TLR3, NF-κB, MYD88, and LINE-1 did not differ between cases and controls. Methylation of the TNF-α promoter increased as disease severity increased. Significantly less methylation of the TLR3 promoter was observed in patients with a positive outcome (recovery). We also found a correlation between the expression of DNMT3B and the methylation level of the TLR4 promoter. In milder cases, the global 5-mC levels were lower than that in more severe cases. Our findings suggest the exclusion of DNMTs inhibitors previously recommended for COVID-19 treatment and the need for additional research in this area.


Asunto(s)
COVID-19 , Metilación de ADN , Humanos , Factor de Necrosis Tumoral alfa/genética , Receptor Toll-Like 4/genética , FN-kappa B/genética , Estudios de Casos y Controles , Tratamiento Farmacológico de COVID-19 , Factor 88 de Diferenciación Mieloide/genética , Receptor Toll-Like 3/genética , COVID-19/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN/metabolismo
5.
Egypt Heart J ; 74(1): 65, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36076093

RESUMEN

BACKGROUND: Childhood dilated cardiomyopathy (CDCM) is the most common cardiomyopathy in children and it is risk factor to heart failure and sudden death. Most of the different etiologic factors which have been postulated to DCM are idiopathic, and its pathogenesis remains uncertain. So it was worth investigating the potential DCM pathogenicity models to establish early noninvasive diagnosis parameters especially in CDCM patients. Beside that miRNAs in the circulatory blood are genetically considered the best option for noninvasive diagnosis; also, implementation of miRNAs as early diagnostic markers for children with DCM is urgent because those children have high risk to sudden heart death. We aimed to identify discriminator diagnostic circulatory miRNA expression levels in CDCM patients. RESULTS: The expression levels of miR-454-3p and miR-194-5p were found significant upregulated (p value = 0.001 and 0.018; CI 95%, respectively), while miR-875-3p was found significant downregulated (p value = 0.040; CI 95%). A receiver operating characteristic (ROC) curve analysis showed significant AUC = 1.000 and 0.798 for miR-454-3p and miR-194-5p, respectively, and the optimal discriminated diagnostic cut-points were computed by index of union (IU) method. Enrichment analysis for the potential targeted mature mRNAs by miR-454-3p and miR-194-5p pointed that Ca, Na and K ions homeostasis in cardiac sarcolemma consider potential CDCM pathogenicity model. CONCLUSIONS: miR-454-3p and miR-194-5p are highly influencing noninvasive biomarkers for CDCM, and further circulatory miRNAs-implicated studies are highly recommended.

6.
Asian Pac J Cancer Prev ; 23(9): 2921-2928, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36172653

RESUMEN

OBJECTIVE: In this work, we represented new non-cytotoxic treatments to avoid serious side effects of current used cytotoxic anticancer drugs. These treatments can compensate in finding convenient treatment for each individual case using a single agent from marine sponge Hemimycale arabica. METHODS: The ethanol extract was partitioned by cold sequential liquid-liquid extraction to afford petroleum ether, diethyl ether, dichloromethane and ethyl acetate fractions. Chemical composition of H. arabica was performed by gas-liquid chromatography and gas chromatography-mass spectroscopy. Anticancer activity was evaluated by means of cytotoxicity, apoptosis induction, tumor cell migration inhibition and expression analysis of proliferation and migration-related genes. RESULTS: Our results revealed that all treatments were non-cytotoxic except for dichloromethane fraction which exhibited moderate cytotoxic activity. Caspase-independent apoptosis was induced by total ethanol and dichloromethane fractions while ethyl acetate fraction induces caspase-dependent apoptosis. All treatments inhibited matrix metalloproteinase-independent migration. Petroleum ether and dichloromethane inhibited migration through the down-regulation of FGF and it could be used as anticancer therapy for VEGF-resistance patients. While ethanol inhibited tumor cell migration through down-regulation of all tested genes expression. Ether and ethyl acetate fractions exerted anti-migratory activity without affecting the tested genes. All resuls were statistically significant at p˂0.05. CONCLUSION: Total ethanol extract is a promising non-cytotoxic anticancer agent because of its powerful apoptosis induction and capability to block tumor cell migration. Petroleum ether and ether fractions area weak non-cytotoxic anti-migratory agents. Dichloromethane could be a moderate cytotoxic anti-migratory agent induced caspase-independent apoptosis. It could be used in anticancer therapy for VEGF-resistance patients through downregulation of FGF. Ethyl acetate fraction considered a non-cytotoxic agent exerting moderate anti-migratory activity. The new sponge-derived treatments can solve different resistance problems to find a convenient treatment for each individual case using a single agent.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Poríferos , Acetatos , Alcanos , Animales , Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Caspasas , Etanol/química , Éter , Neoplasias Hepáticas/tratamiento farmacológico , Cloruro de Metileno , Extractos Vegetales/química , Extractos Vegetales/farmacología , Solventes/química , Factor A de Crecimiento Endotelial Vascular
7.
Anticancer Agents Med Chem ; 22(6): 1213-1225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34315394

RESUMEN

OBJECTIVE: This study aimed to appraise the activity of Pterocladia capillacea and Corallina officinalis polysaccharides against Breast Cancer Stem Cells (BCSCs). P. capillacea and C. officinalis polysaccharides were characterized to be sulfated polysaccharide-protein complexes. METHODS: Cytotoxicity of the polysaccharides against MDA-MB-231 and MCF-7 cell lines along with their impact on CD44+/CD24- and aldehyde dehydrogenase 1(ALDH1) positive BCSC population were determined. Their effect on gene expression of CSC markers, Wnt/ß-catenin and Notch signaling pathways was evaluated. RESULTS: P. capillacea and C. officinalis polysaccharides inhibited the growth of breast cancer cells and reduced BCSC subpopulation. P. capillacea polysaccharides significantly down-regulated OCT4, SOX2, ALDH1A3 and vimentin in MDA-MB-231 as well as in MCF-7 cells except for vimentin that was up-regulated in MCF-7 cells. C. officinalis polysaccharides exhibited similar effects except for OCT4 that was up-regulated in MDA-MB-231 cells. Significant suppression of Cyclin D1 gene expression was noted in MDA-MB-231 and MCF-7 cells treated with P. capillacea or C. officinalis polysaccharides. ß-catenin and c-Myc genes were significantly down-regulated in MDA-MB-231 cells treated with C. officinalis and P. capillacea polysaccharides, respectively, while being up-regulated in MCF-7 cells treated with either of them. Additionally, P. capillacea and C. officinalis polysaccharides significantly down-regulated Hes1 gene in MCF-7 cells despite increasing Notch1 gene expression level. However, significant down-regulation of Notch1 gene was observed in MDA-MB-231 cells treated with P. capillacea polysaccharides. CONCLUSION: Collectively, this study provides evidence for the effectiveness of P. capillacea and C. officinalis polysaccharides in targeting BCSCs through interfering with substantial signaling pathways contributing to their functionality.


Asunto(s)
Neoplasias de la Mama , beta Catenina , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Células MCF-7 , Células Madre Neoplásicas , Polisacáridos/farmacología , Vimentina/metabolismo , Vimentina/farmacología , beta Catenina/metabolismo
8.
Ann Hum Genet ; 85(3-4): 105-114, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33576006

RESUMEN

INTRODUCTION: Protein kinase C theta (PKCθ) is expressed in ER-negative breast cancer and promotes cancer stem cells (CSCs) phenotype. PKCθ gene (PRKCQ) is predicted to be a target for tumor suppressor miR-203. Herein, we aim to validate this prediction and evaluate the ability of miR-203 to inhibit migration of breast cancer cell line enriched with CSCs, MDA-MB-231, via PRKCQ targeting. METHODS: Cells were transfected with miR-203 mimic, PRKCQ siRNA and negative control; then real-time PCR, migration assay, western blotting, reporter assay, and chromatin accessibility assay were performed. RESULTS: Our findings displayed significant decrease in PRKCQ mRNA level and luciferase signals in cells with restored miR-203 expression, therefore, validated PRKCQ as a direct target of miR-203. Additionally, inhibiting PRKCQ by siRNA led to significant inhibition of miR-203 expression and significant decrease of chromatin accessibility at miR-203 promoter region 466-291 upstream TSS. Both of miR-203 re-expression and PRKCQ suppression resulted in altering migration ability of MDA-MB-231 through regulating AKT pathway and genes involved in breast cancer stem cells, CD44 and ALDH1A3. Expression of CDK5, GIV, and NANOG was significantly downregulated in miR-203 mimic-transfected cells, while PRKCQ siRNA-transfected cells displayed downregulation of OCT3/4, SOX2, and NANOG. Furthermore, we found that miR-224 expression was enhanced while miR-150 was downregulated after ectopic expression of miR-203. CONCLUSION: The study highlighted the negative feedback loop between miR-203 and its target PRKCQ and the interplay between them in regulating genes involved in BCSCs. The study also concluded "microRNA-mediated microRNA regulation" as an event in breast cancer cells.


Asunto(s)
Neoplasias de la Mama/genética , MicroARNs/genética , Células Madre Neoplásicas , Proteína Quinasa C-theta/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Transducción de Señal
9.
Behav Brain Res ; 378: 112272, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31586564

RESUMEN

Catechol-O-methyltransferase (COMT) enzyme has a major role in the adjustment of catechol-dependent functions, for example, cognition, cardiac function, and pain processing. The pathogenesis of autism may be related to dysfunction in the midbrain dopaminergic system. Therefore, we aimed to clarify how COMT gene variants affect dopamine level, and its potential impact on phenotype traits of autistic patients. 52 autistic patients were subjected to comprehensive clinical investigation, sequencing of exon 4 of the COMT gene by direct Sanger Sequencing, and measuring of dopamine levels. The clinical presentations of autistic subjects were correlated with detected COMT variants and dopamine level. Our molecular results revealed that three COMT variants were found: rs8192488 [C > T], rs4680 (Val158Met) and rs4818 [C > G]. Within autistic subjects, Val158Met rs4680 carriers were significantly distributed (71.2% P = 0.014) accompanied with abnormal dopamine, abnormal Electroencephalogram (EEG) and increasing the severity of autistic behaviour. As regards the haplotypes, CC/VM/CG block was significantly distributed among the autistic subjects (30.8%) presented with low mean dopamine level (15.8 ±â€¯4.7 pg/ml, p = 0.05), while CC/MM/CC were presented with high mean level (77.8 ±â€¯8.6 pg/ml, p = 0.05). Evidence is currently limited and preliminary, further studies are necessary in order to set up a coherent dopaminergic model of Autism Spectrum Disorder (ASD), which would further pave the way for an adequate treatment.


Asunto(s)
Trastorno del Espectro Autista/sangre , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Catecol O-Metiltransferasa/genética , Dopamina/sangre , Adolescente , Niño , Preescolar , Electroencefalografía , Femenino , Humanos , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Índice de Severidad de la Enfermedad
10.
J Pharm Anal ; 9(4): 284-291, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31452967

RESUMEN

Cancer recurrence and severe side effects of currently being used chemotherapeutic agents reduce their clinical efficacy. Thus, there is a constant need to develop alternative anticancer drugs. Sustainable supply is an important challenge facing marine-based drug discovery. Primmorph, a 3D cell culture system, could provide a sustainable source to produce metabolites for anticancer drugs from marine sponges. In the present work, the anticancer activity of primmorph extracts and mesohyls of Negombata magnifica, Hemimycle arabica, Crella spinulata, and Stylissa carteri sponges was evaluated. Antiproliferative activity was studied in terms of cytotoxicity, colony formation, cell cycle, and apoptosis. Migration was assessed by migration assay and matrix metalloproteinase activity. The expression of proliferation and migration-related genes was analyzed using real time PCR. Migration and proliferation activities of HepG2 cells were inhibited by treatment with primmorph extracts and mesohyls of N. magnifica, H. arabica, and C. spinulata. The mesohyl of S. carteri did not show any anticancer activity although the primmorph extract led to cell cycle arrest. Among the selected sponge species, the primmorph extract of C. spinulata was the most promising anticancer agent regarding antiproliferative and antimigratory activities. In addition, primmorph extracts have the advantage of working under well-defined and controlled conditions, which allows the easy application as a bioreactor.

11.
Pathol Oncol Res ; 25(2): 559-566, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30361904

RESUMEN

MicroRNAs (miRNAs) trigger a two-layer regulatory network directly or through transcription factors and their co-regulators. Unlike miR-375, the role of miR-145 and miR-224 in inhibiting or driving cancer cell migration is controversial. This study is a step towards addressing the potential of miR-375, miR-145 and miR-224 expression modulation to inhibit colorectal carcinoma (CRC) cells migration in vitro through regulation of non-target genes VEGFA, TGFß1, IGF1, CD105 and CD44. Transwell migration assay results revealed a significant subdue of migration ability of cells transfected with miR-375 and miR-145 mimics and miR-224 inhibitor. Real time PCR data showed that expression of VEGFA, TGFß1, IGF1, CD105 and CD44 was downregulated as a consequence of exogenous re-expression of miR-375 and inhibition of miR-224. On the other hand, ectopic expression of miR-145 did not affect VEGFA, TGFß1 and CD44 expression, while it elevated CD105 and suppressed IGF1 expression. MAP4K4, a predicted target of miR-145, was validated as a target that could play a role in miR-145-mediated regulation of migration. At mRNA level, no change was observed in expression of MAP4K4 in cells with restored expression of miR-145, while western blotting analysis revealed a 25% reduction of protein level. By applying luciferase reporter assay, a significant decrease in luciferase activity was observed, supporting that miR-145 directly target 3' UTR of MAP4K4. The study highlighted the involvement of non-target genes VEGFA, TGFß1, IGF1, CD105 and CD44 in mediating anti- and pro-migratory effect of miR-375 and miR-224, respectively, and validated MAP4K4 as a direct target of anti-migratory miR-145.


Asunto(s)
Movimiento Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica/genética , MicroARNs/genética , Células HCT116 , Humanos
12.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-753374

RESUMEN

Cancer recurrence and severe side effects of currently being used chemotherapeutic agents reduce their clinical efficacy. Thus, there is a constant need to develop alternative anticancer drugs. Sustainable supply is an important challenge facing marine-based drug discovery. Primmorph, a 3D cell culture system, could provide a sustainable source to produce metabolites for anticancer drugs from marine sponges. In the present work, the anticancer activity of primmorph extracts and mesohyls of Negombata magnifica, Hemimycle arabica, Crella spinulata, and Stylissa carteri sponges was evaluated. Anti-proliferative activity was studied in terms of cytotoxicity, colony formation, cell cycle, and apoptosis. Migration was assessed by migration assay and matrix metalloproteinase activity. The expression of proliferation and migration-related genes was analyzed using real time PCR. Migration and proliferation activities of HepG2 cells were inhibited by treatment with primmorph extracts and mesohyls of N. magnifica, H. arabica, and C. spinulata. The mesohyl of S. carteri did not show any anticancer activity although the primmorph extract led to cell cycle arrest. Among the selected sponge species, the prim-morph extract of C. spinulata was the most promising anticancer agent regarding antiproliferative and antimigratory activities. In addition, primmorph extracts have the advantage of working under well-defined and controlled conditions, which allows the easy application as a bioreactor.

13.
Biomed Pharmacother ; 94: 767-773, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28802228

RESUMEN

Artificially designed miRNAs mimics and inhibitors that specifically target known oncogenes have attracted significant research attention. Herein, we aimed to explore whether MIR-375, MIR-145, and MIR-224 are involved in induction of apoptosis of CRC cells by regulating apoptosis-mediating genes MTDH, MAP3K1, PDK1, BAX, and BCL-XL. MTT assay was used to assess cell growth. Apoptosis was determined in terms of caspase activity measurement and phosphatidylserine detection using annexin V staining by flow cytometry. Quantitative real time PCR, Western blotting, and luciferase reporter assay were carried out to validate genes regulation and targeting by miRNAs. We found that ectopic expression of MIR-375 and MIR-145, and inhibition of MIR-224 can decrease cell growth and induce cell ability to undergo early apoptosis. At mRNA level, transfected cells displayed down-regulation of MTDH, PDK1 and BCL-XL, while BAX and MAP3K1 were up-regulated. Protein expression of MTDH was decreased in cells transfected with MIR-145 mimic and MIR-224 inhibitor but remained unchanged in MIR-375 mimic-transfected cells. Furthermore, MAP3K1 protein expression exibited a decreased level after MIR-375 transient expression with no significant change after MIR-145 mimic or MIR-224 inhibitor transfection. Luciferase reporter assay revealed that MIR-375 and MIR-145 can bind to 3'UTR of MTDH, supporting that MTDH is directly targeted by both miRNAs. Similarly, MAP3K1 was found to be directly regulated by MIR-375. The study concluded that the expression modulation of tumor suppressors MIR-375 and MIR-145, and oncomiR MIR-224 have the ability to induce apoptosis of CRC cells through regulation of apoptosis mediating genes MTDH, MAP3K1, PDK1, BCL-XL and BAX.


Asunto(s)
Neoplasias Colorrectales/genética , MicroARNs/genética , Apoptosis/genética , Moléculas de Adhesión Celular/genética , Regulación hacia Abajo , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Quinasa 1 de Quinasa de Quinasa MAP/genética , Proteínas de la Membrana , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Regulación hacia Arriba
14.
ScientificWorldJournal ; 2013: 670621, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24453887

RESUMEN

Autism is a neurodevelopmental disorder with indisputable evidence for a genetic component. This work studied the association of autism with genetic variations in neurotransmitter-related genes, including MAOA uVNTR, MAOB rs1799836, and DRD2 TaqI A in 53 autistic patients and 30 healthy individuals. The study also analyzed sequence variations of miR-431 and miR-21. MAOA uVNTR was genotyped by PCR, MAOB and DRD2 polymorphisms were analyzed by PCR-based RFLP, and miR-431 and miR-21 were sequenced. Low expressing allele of MAOA uVNTR was frequently higher in female patients compared to that in controls (OR = 2.25). MAOB G allele frequency was more significantly increased in autistic patients than in controls (P < 0.001 for both males and females). DRD2 A1+ genotype increased autism risk (OR = 5.1). Severity of autism tends to be slightly affected by MAOA/B genotype. Plasma MAOB activity was significantly reduced in G than in A allele carrying males. There was no significant difference in patients and maternal plasma MAOA/B activity compared to controls. Neither mutations nor SNPs in miR-431 and miR-21 were found among studied patients. This study threw light on some neurotransmitter-related genes suggesting their potential role in Autism pathogenesis that warrants further studies and much consideration.


Asunto(s)
Trastorno Autístico/epidemiología , Trastorno Autístico/genética , Variación Genética/genética , MicroARNs/genética , Neurotransmisores/genética , Polimorfismo de Nucleótido Simple/genética , Adulto , Preescolar , Egipto/epidemiología , Femenino , Marcadores Genéticos/genética , Predisposición Genética a la Enfermedad/epidemiología , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Padres , Prevalencia , Factores de Riesgo , Adulto Joven
15.
Blood Coagul Fibrinolysis ; 20(4): 248-51, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19530339

RESUMEN

This study investigated the level of platelet malondialdehyde (MDA) as a marker of oxidative stress and coenzyme Q10 (CoQ10) as an index of antioxidant capacity in patients with type 2 diabetes mellitus and their relation to glycemic control. The study group consisted of 28 patients with type 2 diabetes mellitus (10 men and 18 women) with mean age of 48 +/- 2 years. Ten healthy individuals, age and sex matched with the patients, were used as a control group. Laboratory investigations in the form of lipid profile, glycosylated hemoglobin, plasma MDA, platelet MDA and plasma CoQ10 were assessed for all patients and controls. The study revealed that plasma and platelet MDA, as a marker of oxidative stress, were significantly higher in diabetic patients than in controls. The level of CoQ10, as antioxidant capacity, was significantly lower in diabetic patients than in controls. There was a negative correlation between plasma CoQ10 concentrations and glycosylated hemoglobin. Type 2 diabetic patients are at increased risk of oxidative stress manifested by increased plasma MDA as well as platelet MDA and decreased CoQ10, and this oxidative stress increases with poor glycemic control.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Malondialdehído/sangre , Estrés Oxidativo , Ubiquinona/análogos & derivados , Antioxidantes/análisis , Diabetes Mellitus Tipo 2/terapia , Femenino , Hemoglobina Glucada/análisis , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Ubiquinona/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...