RESUMEN
The use of yeasts as a feed supplement for cattle can promote animal development and performance. However, for the positive results to be consistent, strains with probiotic properties must be selected. The objective of this study was to isolate and identify yeasts present in the bovine feces and evaluate their probiotic potential together with strains previously isolated from the rumen (preliminary study). A total of 193 isolates were studied, including 139 isolates (19 species) from fecal samples from 11 different animals (Bos taurus and Bos indicus) and 54 strains previously isolated from rumen fluid (Bos taurus). The yeast population in the feces ranged from 3.51 to 4.99 log CFU/g, with Candida pararugosa being the most abundant (isolated from the feces of six samples analysed). Isolates were selected that had negative results in the safety tests (hemolytic activity, DNAse, and gelatinase) and had percentages greater than 35 and 70% for hydrophobicity and auto-aggregation, respectively. In addition, selected isolates had percentages greater than 77.7 and 74.7% for coaggregation with pathogenic strains of Escherichia coli and Clostridium perfringens, respectively. The isolates with percentage growth at 39 °C greater than 64.6% and viability greater than 96.7% were selected for survival testing under bovine gastrointestinal conditions. After the tests, the seven best isolates were selected, belonging to the species Candida pararugosa (L60, CCMA 928 and CCMA 930) and Pichia kudriavzevii (L97, L100, CCMA904, CCMA 907). The selected isolates were exopolysaccharide producers. Based on the results of the evaluated properties, the seven selected isolates were classified as potential probiotics for cattle.
Asunto(s)
Probióticos , Saccharomyces cerevisiae , Bovinos , Animales , Tracto Gastrointestinal , Heces , Escherichia coliRESUMEN
The main challenge of ensiling is conserving the feed through a fermentative process that results in high nutritional and microbiological quality while minimizing fermentative losses. This challenge is of growing interest to farmers, industry and research and involves the use of additives to improve the fermentation process and preserve the ensiled material. Most studies involved microbial additives; lactic acid bacteria (LAB) have been the focus of much research and have been widely used. Currently, LABs are used in modern and sustainable agriculture because of their considerable potential for enhancing human and animal health. Although the number of studies evaluating LABs in silages has increased, the potential use of these micro-organisms in association with silage has not been adequately studied. Fermentation processes using the same strain produce very different results depending on the unique characteristics of the substrate, so the choice of silage inoculant for different starting substrates is of extreme importance to maximize the nutritional quality of the final product. This review describes the current scenario of the bioprospecting and selection process for choosing the best LAB strain as an inoculant for ensiling. In addition, we analyse developments in the fermentation process and strategies and methods that will assist future studies on the selection of new strains of LAB as a starter culture or inoculant.