Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oecologia ; 197(1): 13-24, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33948691

RESUMEN

Plant ecophysiological trade-offs between different strategies for tolerating stresses are widely theorized to shape forest functional diversity and vulnerability to climate change. However, trade-offs between hydraulic and stomatal regulation during natural droughts remain under-studied, especially in tropical forests. We investigated eleven mature forest canopy trees in central Amazonia during the strong 2015 El Niño. We found greater xylem embolism resistance ([Formula: see text] = - 3.3 ± 0.8 MPa) and hydraulic safety margin (HSM = 2.12 ± 0.57 MPa) than previously observed in more precipitation-seasonal rainforests of eastern Amazonia and central America. We also discovered that taller trees exhibited lower embolism resistance and greater stomatal sensitivity, a height-structured trade-off between hydraulic resistance and active stomatal regulation. Such active regulation of tree water status, triggered by the onset of stem embolism, acted as a feedback to avoid further increases in embolism, and also explained declines in photosynthesis and transpiration. These results suggest that canopy trees exhibit a conservative hydraulic strategy to endure drought, with trade-offs between investment in xylem to reduce vulnerability to hydraulic failure, and active stomatal regulation to protect against low water potentials. These findings improve our understanding of strategies in tropical forest canopies and contribute to more accurate prediction of drought responses.


Asunto(s)
Sequías , Árboles , Bosques , Hojas de la Planta , Agua , Xilema
2.
Glob Chang Biol ; 24(9): 4266-4279, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29723915

RESUMEN

Sustained drought and concomitant high temperature may reduce photosynthesis and cause tree mortality. Possible causes of reduced photosynthesis include stomatal closure and biochemical inhibition, but their relative roles are unknown in Amazon trees during strong drought events. We assessed the effects of the recent (2015) strong El Niño drought on leaf-level photosynthesis of Central Amazon trees via these two mechanisms. Through four seasons of 2015, we measured leaf gas exchange, chlorophyll a fluorescence parameters, chlorophyll concentration, and nutrient content in leaves of 57 upper canopy and understory trees of a lowland terra firme forest on well-drained infertile oxisol. Photosynthesis decreased 28% in the upper canopy and 17% in understory trees during the extreme dry season of 2015, relative to other 2015 seasons and was also lower than the climatically normal dry season of the following non-El Niño year. Photosynthesis reduction under extreme drought and high temperature in the 2015 dry season was related only to stomatal closure in both upper canopy and understory trees, and not to chlorophyll a fluorescence parameters, chlorophyll, or leaf nutrient concentration. The distinction is important because stomatal closure is a transient regulatory response that can reverse when water becomes available, whereas the other responses reflect more permanent changes or damage to the photosynthetic apparatus. Photosynthesis decrease due to stomatal closure during the 2015 extreme dry season was followed 2 months later by an increase in photosynthesis as rains returned, indicating a margin of resilience to one-off extreme climatic events in Amazonian forests.


Asunto(s)
Sequías , El Niño Oscilación del Sur , Bosques , Fotosíntesis/fisiología , Árboles/fisiología , Brasil , Hojas de la Planta/fisiología , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...