Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 253, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441693

RESUMEN

The synergistic corrosion effect of acid-producing bacteria (APB) and magnetite on carbon steel corrosion was assessed using two different microbial consortia. A synergistic corrosion effect was observed exclusively with Consortium 2, which was composed of Enterobacter sp., Pseudomonas sp., and Tepidibacillus sp. When Consortium 2 was accompanied by magnetite, uniform corrosion and pitting rates were one-time higher (0.094 mm/year and 0.777 mm/year, respectively) than the sum of the individual corrosion rates promoted by the consortium and deposit separately (0.084 and 0.648 mm/year, respectively). The synergistic corrosion effect observed exclusively with Consortium 2 is attributed to its microbial community structure. Consortium 2 exhibited higher microbial diversity that benefited the metabolic status of the community. Although both consortia induced acidification of the test solution and metal surface through glucose fermentation, heightened activity levels of Consortium 2, along with increased surface roughness caused by magnetite, contributed to the distinct synergistic corrosion effect observed with Consortium 2 and magnetite. KEY POINTS: • APB and magnetite have a synergistic corrosion effect on carbon steel. • The microbial composition of APB consortia drives the synergistic corrosion effect. • Magnetite increases carbon steel surface roughness.


Asunto(s)
Óxido Ferrosoférrico , Microbiota , Corrosión , Carbono , Acero
2.
Sci Rep ; 14(1): 2954, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316948

RESUMEN

The quantity and quality of DNA isolated from environmental samples are crucial for getting robust high-throughput sequencing data commonly used for microbial community analysis. The differences in the nature and physicochemical properties of environmental samples impact DNA yields, and therefore, an optimisation of the protocols is always recommended. For instance, samples collected from corroded areas contain high concentrations of metals, salts, and hydrocarbons that can interfere with several steps of the DNA extraction protocols, thereby reducing yield and quality. In this study, we compared the efficiency of commercially available DNA extraction kits and laboratory-adopted methods for microbial community analysis of iron incrustations and oilfield-produced water samples. Modifications to the kits manufacturers' protocols were included to maximise the yield and quality. For iron incrustations, the modified protocol for FastDNA Spin Kit for Soil yielded higher DNA and resulted in higher diversity, including the recovery of low-abundant and rare taxa in the samples, compared to DNeasy PowerSoil Pro Kit. The DNA extracted with modified phenol-chloroform methods yielded higher DNA but failed to pass quality control PCR for 16S sequencing with and without purification. The protocols mentioned here can be used to maximise DNA recovery from iron incrustations and oilfield-produced water samples.


Asunto(s)
ADN Ambiental , Microbiota , ADN Bacteriano/genética , Hierro , Yacimiento de Petróleo y Gas , ADN/genética , Microbiota/genética
3.
Front Microbiol ; 14: 1089649, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846765

RESUMEN

Introduction: The deposition of solid particles carried by production fluids from oil and gas companies in horizontal surfaces of different assets has shown to cause severe localised corrosion. Sand, one of the most common deposits in the energy sector pipelines, is frequently mixed with crude, oil, asphaltenes, corrosion inhibitors, and other organic compounds. For this reason, they might favour the metabolic activity of native microbial communities. This study aimed to determine the impact of sand-deposit chemical composition on the microbial community structure and functional attributes of a multispecies consortium recovered from an oilfield and the resulting risk of under-deposit microbial corrosion of carbon steel. Methods: Sand deposits recovered from an oil pipeline were used in their raw form and compared against the same deposits exposed to heat treatment to remove organic compounds. A four-week immersion test in a bioreactor filled with synthetic produced water and a two-centimeter layer of sand was set up to assess corrosion and microbial community changes. Results: The raw untreated deposit from the field containing hydrocarbons and treatment chemicals resulted in a more diverse microbial community than its treated counterpart. Moreover, biofilms developed in the raw sand deposit exhibited higher metabolic rates, with functional profile analysis indicating a predominance of genes associated with xenobiotics degradation. Uniform and localized corrosion were more severe in the raw sand deposit compared to the treated sand. Discussion: The complex chemical composition of the untreated sand might have represented an additional source of energy and nutrients to the microbial consortium, favoring the development of different microbial genera and species. The higher corrosion rate obtained under the untreated sand suggests that MIC occurred due to syntrophic relationships between sulphate reducers or thiosulphate reducers and fermenters identified in the consortium.

4.
Microorganisms ; 10(7)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35889003

RESUMEN

Multispecies biofilms represent a pervasive threat to marine-based industry, resulting in USD billions in annual losses through biofouling and microbiologically influenced corrosion (MIC). Biocides, the primary line of defence against marine biofilms, now face efficacy and toxicity challenges as chemical tolerance by microorganisms increases. A lack of fundamental understanding of species and EPS composition in marine biofilms remains a bottleneck for the development of effective, target-specific biocides with lower environmental impact. In the present study, marine biofilms are developed on steel with three bacterial isolates to evaluate the composition of the EPSs (extracellular polymeric substances) and population dynamics. Confocal laser scanning microscopy, scanning electron microscopy, and fluorimetry revealed that extracellular DNA (eDNA) was a critical structural component of the biofilms. Parallel population analysis indicated that all three strains were active members of the biofilm community. However, eDNA composition did not correlate with strain abundance or activity. The results of the EPS composition analysis and population analysis reveal that biofilms in marine conditions can be stable, well-defined communities, with enabling populations that shape the EPSs. Under marine conditions, eDNA is a critical EPS component of the biofilm and represents a promising target for the enhancement of biocide specificity against these populations.

5.
Front Bioeng Biotechnol ; 10: 825776, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360385

RESUMEN

Shewanella chilikensis DC57 is a bacterial strain isolated from a corrosion failure in a floating oil production system. Previous studies have indicated that this microorganism has potential to trigger corrosion of carbon steel through several metabolic pathways identified in its genome. In this study we evaluated the corrosion of carbon steel by S. chilikensis in the presence of thiosulphate or nitrate as terminal electron acceptors of the anaerobic respiration. Electrochemical response of carbon steel to the biofilm formation revealed differences in the corrosion process under the different electron acceptors conditions. Microscopic examination of the metal surface confirmed that S. chilikensis induced corrosion in both scenarios; however, in the presence of thiosulfate S. chilikensis triggered a higher pitting corrosion rate, whereas in presence of nitrate it promoted higher uniform corrosion. This study demonstrates the importance of understanding the metabolic versatility of microbes in order to assess the MIC risk of industrial facilities.

6.
Microbiol Resour Announc ; 9(38)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32943556

RESUMEN

Here, we describe the genome of Shewanella chilikensis strain DC57, a facultatively anaerobic bacterium isolated from corroded seal rings at a floating oil production system in Australia. The genome of strain DC57 has a size of 4.91 Mbp and harbors 4,178 predicted protein-encoding genes.

7.
Microbiol Resour Announc ; 9(34)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32816973

RESUMEN

Here, we report the genome sequence of Enterobacter roggenkampii strain OS53, isolated from corroded pipework at an offshore oil production facility. The draft genome sequence comprises 6 contigs and contains 5,194,507 bp with an average GC content of 55.90%.

8.
Sci Rep ; 10(1): 12287, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32703991

RESUMEN

Corrosion of carbon steel by microorganisms recovered from corroded seal rings at an offshore floating production facility was investigated. Microbial diversity profiling revealed that communities in all sampled seal rings were dominated by Pseudomonas genus. Nine bacterial species, Pseudomonas aeruginosa CCC-IOB1, Pseudomonas balearica CCC-IOB3, Pseudomonas stutzeri CCC-IOB10, Citrobacter youngae CCC-IOB9, Petrotoga mobilis CCC-SPP15, Enterobacter roggenkampii CCC-SPP14, Enterobacter cloacae CCC-APB1, Cronobacter sakazakii CCC-APB3, and Shewanella chilikensis CCC-APB5 were isolated from corrosion products and identified based on 16S rRNA gene sequence. Corrosion rates induced by the individual isolates were evaluated in artificial seawater using short term immersion experiments at 40 °C under anaerobic conditions. P. balearica, E. roggenkampii, and S. chilikensis, which have not been associated with microbiologically influenced corrosion before, were further investigated at longer exposure times to better understand their effects on corrosion of carbon steel, using a combination of microbiological and surface analysis techniques. The results demonstrated that all bacterial isolates triggered general and localised corrosion of carbon steel. Differences observed in the surface deterioration pattern by the different bacterial isolates indicated variations in the corrosion reactions and mechanisms promoted by each isolate.


Asunto(s)
Bacterias , Carbono/química , Corrosión , Acero/química , Bacterias/clasificación , Bacterias/genética , Biopelículas , Microbiota , Tipificación Molecular , Filogenia , ARN Ribosómico 16S , Agua de Mar/microbiología
9.
Microbiol Resour Announc ; 9(19)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32381614

RESUMEN

Pseudomonas balearica strain EC28 is an iron-oxidizing bacterium isolated from corroded steel at a floating production storage and offloading facility in Australia. Here, we report its complete genome sequence, which comprises 4,642,566 bp with a GC content of 64.43%. The genome harbors 4,164 predicted protein-encoding genes.

10.
Appl Environ Microbiol ; 86(7)2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31980429

RESUMEN

The impact that nutrient level has on biofilm characteristics, biocide effectiveness, and the associated risk of microbiologically influenced corrosion (MIC) was assessed using multispecies biofilms from two different oilfield consortia. A range of microbiological, microscopy, and corrosion methods demonstrated that the continuous flow of nutrients for the microbial growth resulted in higher activity, thickness, and robustness of the biofilms formed on carbon steel, which induced greater localized corrosion compared to biofilms formed under batch, nutrient-depleted conditions. Despite of the differences in biofilm characteristics, biofilms displayed comparable susceptibilities to glutaraldehyde biocide, with similar log10 reductions and percent reductions of microorganisms under both nutrient conditions. Nevertheless, nutrient replenishment impacted the effectiveness of the biocide in controlling microbial populations; a higher concentration of cells survived the biocide treatment in biofilms formed under a continuous flow of nutrients. Complementary DNA-/RNA-based amplicon sequencing and bioinformatics analysis were used to discriminate the active within the total populations in biofilms established at the different nutrient conditions and allowed the identification of the microbial species that remained active despite nutrient depletion and biocide treatment. Detection of persistent active microorganisms after exposure to glutaraldehyde, regardless of biofilm structure, suggested the presence of microorganisms less susceptible to this biocide and highlighted the importance of monitoring active microbial species for the early detection of biocide resistance in oil production facilities.IMPORTANCE Microbiologically influenced corrosion (MIC) is a complex process that generates economic losses to the industry every year. Corrosion must be managed to prevent a loss of containment of produced fluids to the external environment. MIC management includes the identification of assets with higher MIC risk, which could be influenced by nutrient levels in the system. Assessing biofilms under different nutrient conditions is essential for understanding the impact of flow regime on microbial communities and the subsequent impact on microbial corrosion and on the effectiveness of biocide treatment. This investigation simulates closely oil production systems, which contain piping sections exposed to continuous flow and sections that remain stagnant for long periods. Therefore, the results reported here are useful for MIC management and prevention. Moreover, the complementary methodological approach applied in this investigation highlighted the importance of implementing RNA-based methods for better identification of active microorganisms that survive stress conditions in oil systems.


Asunto(s)
Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Desinfectantes/uso terapéutico , Acero/química , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Corrosión , Nutrientes/análisis
11.
Front Microbiol ; 10: 2587, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31787960

RESUMEN

DNA and RNA-based sequencing of the 16S rRNA gene and transcripts were used to assess the phylogenetic diversity of microbial communities at assets experiencing corrosion in an oil production facility. The complementary methodological approach, coupled with extensive bioinformatics analysis, allowed to visualize differences between the total and potentially active communities present in several locations of the production facility. According to the results, taxa indicative for thermophiles and oil-degrading microorganisms decreased their relative abundances in the active communities, whereas sulfate reducing bacteria and methanogens had the opposite pattern. The differences in the diversity profile between total and active communities had an effect on the microbial functional capability predicted from the 16S rRNA sequences. Primarily, genes involved in methane metabolism were enriched in the RNA-based sequencing approach. Comparative analysis of microbial communities in the produced water, injection water and deposits in the pipelines showed that deposits host more individual species than other sample sources in the facility. Similarities in the number of cells and microbial profiles of active communities in biocide treated and untreated sampling locations suggested that the treatment was ineffective at controlling the growth of microbial populations with a known corrosive metabolism. Differences in the results between DNA and RNA-based profiling demonstrated that DNA results alone can lead to the underestimation of active members in the community, highlighting the importance of using a complementary approach to obtain a broad general overview not only of total and active members but also in the predicted functionality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...