Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334812

RESUMEN

Brain organoids, three-dimensional cell structures derived from pluripotent stem cells, closely mimic key aspects of the human brain in vitro, providing a powerful tool for studying neurodevelopment and disease. The neuroectodermal induction protocol employed for brain organoid generation primarily gives rise to the neural cellular component but lacks the vital vascular system, which is crucial for the brain functions by regulating differentiation, migration, and circuit formation, as well as delivering oxygen and nutrients. Many neurological diseases are caused by dysfunctions of cerebral microcirculation, making vascularization of human brain organoids an important tool for pathogenetic and translational research. Experimentally, the creation of vascularized brain organoids has primarily focused on the fusion of vascular and brain organoids, on organoid transplantation in vivo, and on the use of microfluidic devices to replicate the intricate microenvironment of the human brain in vitro. This review summarizes these efforts and highlights the importance of studying the neurovascular unit in a forward-looking perspective of leveraging their use for understanding and treating neurological disorders.

2.
Ageing Res Rev ; 92: 102126, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37972860

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder and the most common motor neuron disease. ALS shows substantial clinical and molecular heterogeneity. In vitro and in vivo models coupled with multiomic techniques have provided important contributions to unraveling the pathomechanisms underlying ALS. To date, despite promising results and accumulating knowledge, an effective treatment is still lacking. Here, we provide an overview of the literature on the use of genomics, epigenomics, transcriptomics and microRNAs to deeply investigate the molecular mechanisms developing and sustaining ALS. We report the most relevant genes implicated in ALS pathogenesis, discussing the use of different high-throughput sequencing techniques and the role of epigenomic modifications. Furthermore, we present transcriptomic studies discussing the most recent advances, from microarrays to bulk and single-cell RNA sequencing. Finally, we discuss the use of microRNAs as potential biomarkers and promising tools for molecular intervention. The integration of data from multiple omic approaches may provide new insights into pathogenic pathways in ALS by shedding light on diagnostic and prognostic biomarkers, helping to stratify patients into clinically relevant subgroups, revealing novel therapeutic targets and supporting the development of new effective therapies.


Asunto(s)
Esclerosis Amiotrófica Lateral , MicroARNs , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , MicroARNs/genética , MicroARNs/metabolismo , Biomarcadores , Epigenómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...