Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Inorg Biochem ; 235: 111947, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35933833

RESUMEN

Quercetin is one of the most bioactive and common dietary flavonoids, with a significant repertoire of biological and pharmacological properties. The biological activity of quercetin, however, is influenced by its limited solubility and bioavailability. Driven by the need to enhance quercetin bioavailability and bioactivity through metal ion complexation, synthetic efforts led to a unique ternary Ce(III)-quercetin-(1,10-phenanthroline) (1) compound. Physicochemical characterization (elemental analysis, FT-IR, Thermogravimetric analysis (TGA), UV-Visible, NMR, Electron Spray Ionization-Mass Spectrometry (ESI-MS), Fluorescence, X-rays) revealed its solid-state and solution properties, with significant information emanating from the coordination sphere composition of Ce(III). The experimental data justified further entry of 1 in biological studies involving toxicity, (Reactive Oxygen Species, ROS)-suppressing potential, cell metabolism inhibition in Saccharomyces cerevisiae (S. cerevisiae) cultures, and plasmid DNA degradation. DFT calculations revealed its electronic structure profile, with in silico studies showing binding to DNA, DNA gyrase, and glutathione S-transferase, thus providing useful complementary insight into the elucidation of the mechanism of action of 1 at the molecular level and interpretation of its bio-activity. The collective work projects the importance of physicochemically supported bio-activity profile of well-defined Ce(III)-flavonoid compounds, thereby justifying focused pursuit of new hybrid metal-organic materials, effectively enhancing the role of naturally-occurring flavonoids in physiology and disease.


Asunto(s)
Antioxidantes , Quercetina , Antiinflamatorios , Antioxidantes/farmacología , ADN , Fenantrolinas , Quercetina/química , Quercetina/farmacología , Saccharomyces cerevisiae , Espectroscopía Infrarroja por Transformada de Fourier
2.
J Inorg Biochem ; 222: 111469, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34192625

RESUMEN

Among transition and non-transition metals, thallium is a unique case of an element which, despite its known toxicity, provides interesting challenges through its biology and chemistry linked to diagnosis of human pathophysiologies. Poised to investigate in-depth the structural and electronic aspects of thallium involvement in physiological processes, the synthetic exploration of aqueous binary systems of Tl(I) with physiological binders from the family of hydroxycarboxylic acids (glycolic, lactic, mandelic and citric acid) was pursued in a pH-specific fashion. The isolated crystalline coordination polymers, emerging from that effort, were physicochemically characterized through elemental analysis, FT-IR, ESI-MS, 1H-/13C-NMR, and X-ray crystallography. The coordination environment of thallium in each molecular Tl(I) assembly, along with lattice dimensionality (2D3D), reflects the contributions of the ligands, collectively exemplifying interactions probed into though BVS and Hirshfeld surface analysis. The results portray a well-defined solid-state and solution profile for all species investigated, thereby providing the basis for their subsequent selection into in vitro biological studies involving the (patho)physiological cell lines 3T3-L1, Saos-2, C2C12, and MCF-7. Biotoxicity profiles, encompassing cell viability, morphology, and cell growth support clearly a concentration-, time-, and cell tissue-specific behavior for the chosen Tl(I) compounds in a structure-specific fashion. Collectively, the chemical experimental data support the biological results in formulating a structure-specific behavior for Tl(I)-hydroxycarboxylato species with respect to biotoxicity mechanisms in a (patho)physiological environment. The accrued knowledge stands as the foreground for further investigation into the relevant biological chemistry of Tl(I) and molecular technologies targeting its sequestration and removal from cellular media.


Asunto(s)
Ácidos Carboxílicos/toxicidad , Complejos de Coordinación/toxicidad , Polímeros/toxicidad , Talio/toxicidad , Células 3T3-L1 , Animales , Ácidos Carboxílicos/síntesis química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Humanos , Ligandos , Ratones , Polímeros/síntesis química , Talio/química , Agua/química
3.
J Inorg Biochem ; 214: 111290, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33242718

RESUMEN

Metal-organic complexes bearing physiological substrates have been the target of several investigations, probing into the potential of well-defined atoxic metalloforms to influence fundamental cellular processes overcoming insulin resistance in Diabetes mellitus 2. Outstanding cases of such metals include zinc and vanadium, both being the target of intense synthetic and biological studies toward insulin mimesis. Owing to the close proximity in the periodic table, an early transition metal, titanium, emerges as another potential candidate of biologically relevant complexation, reflecting species capable of promoting insulin mimetic activity. Driven by the so far explored aqueous synthetic chemistry of Ti(IV)-hydroxycaboxylato systems, a well-defined Ti(IV)-citrate compound was synthesized under physiological conditions, isolated, and characterized, followed by its introduction in biological assays, targeting adipogenic events linked to glucose uptake and catabolism. The mononuclear Ti(IV)-citrate complex was introduced to 3T3-L1 cells, thereby probing into its biological activity (toxicity, morphology, migration, and adipogenic capacity). The results project an atoxic profile for the Ti(IV)-citrate species, thus justifying further incorporation in cellular differentiation processes, leading to mature adipocytes in a time- and concentration-dependent fashion. The experiments suggest that Ti(IV)-citrate is a competent agent promoting fibroblast differentiation, as evidenced by key adipogenic biomarkers, while concurrently exhibiting synergistic/enhancing action with insulin. The collective results show, for the first time, that an appropriately configured soluble-bioavailable complex Ti(IV) form exhibits a distinctly unique bioprofile, thereby lending credence to the notion that titanium metallopharmaceuticals hold merit as competent agents in adipogenesis and insulin mimesis in Diabetes mellitus.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Materiales Biomiméticos , Ácido Cítrico , Células 3T3-L1 , Animales , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Ácido Cítrico/síntesis química , Ácido Cítrico/química , Ratones
4.
J Inorg Biochem ; 195: 201-215, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30986671

RESUMEN

Cadmium is a metallotoxin, amply encountered in the environment and derived through physical and anthropogenic activities. Its entry in various organisms leads through water and the food chain to humans, thereby inducing a plethora of pathophysiologies. Delineation of the interactive role of cadmium with physiological and physiologically relevant substrates, requires well-defined forms of cadmium arising from such interactions along with the ensuing chemical reactivity amounting to toxic manifestations and health aberrations. To implement such efforts, low molecular mass substrate metal ion binders are needed, forming species with enhanced solubility and bioavailability. To that end, α-hydroxy isobutyric acid (HIBAH2) was used in pH-specific synthetic efforts involving bulky aromatic chelators 2,2'-bipyridine (2,2'-bipy) and 1,10-phenanthroline (phen), thus leading to new crystalline materials [Cd(C4H7O3)2]n(1), [Cd(C4H7O3)2(H2O)2](2), [{Cd2(C4H7O3)2(C10H8N2)2(H2O)2}(NO3)2]n·nH2O(3), and [{Cd2(C4H7O3)2(C12H8N2)2(H2O)2}(NO3)2]n·2nH2O(4), which were physicochemically characterized (elemental analysis, FT-IR, NMR, ESI-MS, and X-ray crystallography) in the solid state and solution. Their physicochemical characteristics led to their employment in tissue-specific biological toxicity studies in three different cell lines. Their toxicity profile (cell viability, morphology, chemotacticity) was correlated through genetic biomarkers to apoptotic-necrotic processes, thereby shedding light on cadmium cellular toxicity processes. Finally, the cytoprotective action of specific chelators was examined, lending credence to the notion that appropriately structured chelators and antioxidants may be used as effective deterrent to cadmium toxicity. Collectively, structure-specificity linked to tissue-specific toxicity profiling in well-defined binary-ternary Cd(II)-HIBAH2 systems exemplifies that metal ion's aberrant interactions in the cellular milieu, meriting further probing into the development of efficient chelators in cadmium detoxification.


Asunto(s)
Cadmio/toxicidad , Quelantes/farmacología , Hidroxibutiratos/farmacología , Células A549 , Acetilcisteína/farmacología , Adipocitos/efectos de los fármacos , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quelantes/síntesis química , Quelantes/química , Células Epiteliales/efectos de los fármacos , Humanos , Hidroxibutiratos/síntesis química , Hidroxibutiratos/química , Ligandos , Ratones , Estructura Molecular
5.
J Inorg Biochem ; 194: 180-199, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30875656

RESUMEN

The quest for effective treatments of oxidative stress has concentrated over the years on new nanomaterials with improved antioxidant and antiradical activity, thereby attracting broad research interest. In that regard, research efforts in our lab were launched to pursue such hybrid materials involving a) synthesis of silica gel matrices, b) evaluation of the suitability of atoxic matrices as potential carriers for the controlled release of V(IV)(VOSO4), V(V)(NaVO3) compounds and a newly synthesized heterometallic lithium-vanadium(IV,V) tetranuclear compound containing vanadium-bound hydroxycarboxylic 1,3-diamine-2-propanol-N,N,N',N'-tetraacetic acid (DPOT), and c) investigation of structural and textural properties of silica nanoparticles (NPs) by different and complementary characterization techniques, inquiring into the nature of the encapsulated vanadium species and their interaction with the siloxane matrix, collectively targeting novel antioxidant and antiradical nanomaterials biotechnology. The physicochemical characterization of the vanadium-loaded SiO2 NPs led to the formulation of optimized material configuration linked to the delivery of the encapsulated antioxidant-antiradical load. Entrapment and drug release studies showed a) the competence of hybrid nanoparticles with respect to encapsulation efficiency of the vanadium compound (concentration dependence), b) congruence with the physicochemical features determined, and c) a well-defined release profile of NP load. Antioxidant properties and the free radical scavenging capacity of the new hybrid materials (containing VOSO4, NaVO3, and V-DPOT) were demonstrated through a) 2-diphenyl-1-picrylhydrazyl (DPPH) free radical, and b) intracellular-extracellular reactive oxygen species (ROS) assays, through UV-Visible spectroscopy techniques, collectively showing that the hybrid silica NPs (empty-loaded) could serve as an efficient platform for nanodrug formulations counteracting oxidative stress.


Asunto(s)
Complejos de Coordinación/farmacología , Depuradores de Radicales Libres/farmacología , Nanopartículas/química , Dióxido de Silicio/química , Bacillus subtilis/efectos de los fármacos , Complejos de Coordinación/química , Liberación de Fármacos , Escherichia coli/efectos de los fármacos , Depuradores de Radicales Libres/química , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Vanadio/química
6.
J Inorg Biochem ; 191: 94-111, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30476714

RESUMEN

Curcumin is a natural product with a broad spectrum of beneficial properties relating to pharmaceutical applications, extending from traditional remedies to modern cosmetics. The biological activity of such pigments, however, is limited by their solubility and bioavailability, thereby necessitating new ways of achieving optimal tissue cellular response and efficacy as drugs. Metal ion complexation provides a significant route toward improvement of curcumin stability and biological activity, with vanadium being a representative such metal ion, amply encountered in biological systems and exhibiting exogenous bioactivity through potential pharmaceuticals. Driven by the need to optimally increase curcumin bioavailability and bioactivity through complexation, synthetic efforts were launched to seek out stable species, ultimately leading to the synthesis and isolation of a new ternary V(IV)-curcumin-(2,2'-bipyridine) complex. Physicochemical characterization (elemental analysis, FT-IR, Thermogravimetry (TGA), UV-Visible, NMR, ESI-MS, Fluorescence, X-rays) portrayed the solid-state and solution properties of the ternary complex. Pulsed-EPR spectroscopy, in frozen solutions, suggested the presence of two species, cis- and trans-conformers. Density Functional Theory (DFT) calculations revealed the salient features and energetics of the two conformers, thereby complementing EPR spectroscopy. The well-described profile of the vanadium species led to its in vitro biological investigation involving toxicity, cell metabolism inhibition in S. cerevisiae cultures, Reactive Oxygen Species (ROS)-suppressing capacity, lipid peroxidation, and plasmid DNA degradation. A multitude of bio-assays and methodologies, in comparison to free curcumin, showed that it exhibits its antioxidant potential in a concentration-dependent fashion, thereby formulating a bioreactivity profile supporting development of new efficient vanado-pharmaceuticals, targeting (extra)intra-cellular processes under (patho)physiological conditions.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Curcumina/química , Curcumina/farmacología , Antioxidantes/síntesis química , Cristalografía por Rayos X , Curcumina/síntesis química , Técnicas In Vitro , Especies Reactivas de Oxígeno/metabolismo , Análisis Espectral/métodos
7.
J Inorg Biochem ; 186: 217-227, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29966853

RESUMEN

Diabetes mellitus comprises a group of metabolic abnormalities due to insulin deficiency and/or resistance. Obesity contributes to diabetes, with a strong causal relationship existing between diabetes and insulin resistance, especially in patients with Diabetes mellitus II. Adipocytes emerge as key constituents of adipose tissue physiology. In their pre-mature form to mature state transformation, adipocytes fully exemplify one of the key adipogenic actions of insulin. Poised to a) gain insight into adipogenesis leading to antidiabetic factors, and b) investigate adipogenesis through careful examination of insulin contributions to interwoven mechanistic pathways, a systematic comparative study was launched involving well-defined metal-citrates (zinc and vanadium), the chemical reactivity of which was in line with their chemistry under physiological conditions. Selection of the specific compounds was based on their common aqueous coordination chemistry involving the physiological chelator citric acid. Cellular maturation of pre-adipocytes to their mature form was pursued in the presence-absence of insulin and employment of closely linked genetic targets, key to adipocyte maturation (Peroxisome proliferator-activated receptor gamma (PPAR-γ), Glucose transporter 1,3,4 (GLUT 1,3,4), Adiponectin (ADIPOQ), Glucokinase (GCK), and Insulin receptor (INS-R)). The results show a) distinct adipogenic biological profiles for the metalloforms involved in a dose-, time- and nature-dependent manner, and b) metal ion-specific adipogenic response-signals at the same or higher level than insulin toward all selected targets. Collectively, the foundations have been established for future exploitation of the distinct metal-specific adipogenic factors contributing to the functional maturation of adipose tissue and their use toward hyperglycemic control in Diabetes mellitus.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Citratos , Regulación de la Expresión Génica/efectos de los fármacos , Hipoglucemiantes , Vanadio , Células 3T3-L1 , Adipocitos/patología , Animales , Citratos/química , Citratos/farmacología , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Ratones , Vanadio/química , Vanadio/farmacología
8.
J Inorg Biochem ; 184: 50-68, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29679800

RESUMEN

In an attempt to understand the aqueous interactions of Cr(III) with low-molecular mass physiological ligands and examine its role as an adipogenic metallodrug agent in Diabetes mellitus II, the pH-specific synthesis in the binary-ternary Cr(III)-(HA = hydroxycarboxylic acid)-(N,N)-aromatic chelator (AC) (HA = 2-hydroxyethyl iminodiacetic acid/heidaH2, quinic acid; AC = 1,10-phenanthroline/phen) systems was pursued, leading to four new crystalline compounds. All materials were characterized by elemental analysis, UV-Visible, FT-IR, and ESI-MS spectroscopy, cyclic voltammetry, and X-Ray crystallography. Concurrently, the aqueous speciation of the binary Cr(III)-(2-hydroxyethyl iminodiacetic acid) system, complemented by ESI-MS, provided key-details of the species in solution correlating with the solid-state species. The structurally distinct Cr(III) soluble species were subsequently used in an in vitro investigation of their cytotoxic activity in 3T3-L1 fibroblast cultures. Compound 1 exhibited solubility, bioavailability, and atoxicity over a wide concentration range (0.1-100 µΜ) in contrast to 3, which was toxic. The adipogenic potential of 1 was subsequently investigated toward transformation of pre-adipocytes into mature adipocytes. Confirmation of that capacity relied on molecular biological techniques a) involving genes (glucose transporter type 4, peroxisome proliferator-activated receptor gamma, glucokinase, and adiponectin) serving as sensors of the transformation process, b) comparing the Cr(III)-adipogenicity potential to that of insulin, and c) exemplifying the ultimate maturity of adipocytes poised to catabolize glucose. The collective effort points out salient structural features in the coordination sphere of Cr(III) inducing adipogenic transformation relevant to combating hyperglycemia. The multiply targeted mechanistic insight into such a process exemplifies the role of well-defined Cr(III) complex forms as potential insulin-mimetic adipogenic agents in Diabetes mellitus II.


Asunto(s)
Biomarcadores/metabolismo , Ácidos Carboxílicos/química , Quelantes/química , Cromo/química , Insulina/metabolismo , Células 3T3-L1 , Adipogénesis/fisiología , Animales , Cristalografía por Rayos X , Diabetes Mellitus , Ratones , Espectrometría de Masa por Ionización de Electrospray
9.
J Inorg Biochem ; 177: 228-246, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29073545

RESUMEN

The advent of Zn(II) metallodrugs in metabolic syndrome pathologies generates a strong challenge toward synthetic endeavors targeting well-defined, atoxic and biologically active binary/ternary species of Zn(II). Proper formulation of that metal ion's coordination sphere sets the stage for construction of appropriately configured Schiff ligands based on tromethamine and variably modified vanillin core components. The arising Schiff ligands react with Zn(II) in a defined stoichiometry, thereby delivering new binary Zn(II)-L species with defined physicochemical properties. Analytical (elemental), spectroscopic (FT-IR, Thermogravimetric Analysis) and crystallographic techniques attest to the distinct nature of the derived binary-ternary materials, bearing defined Zn(II):L molecular stoichiometry, variable nuclearity, charge, bulk and balance mix of hydrophilicity-hydrophobicity, thereby providing the physicochemical profile based on which biological studies could ensue. The structurally based selection of species was applied onto in vitro 3T3-L1 cultures, essentially exploring toxicity, migration, morphology, cell differentiation and maturation. The systematic effort toward comparative work on appropriately defined Zn(II) species and insulin in inducing adipogenesis reveals the salient structural features in the Schiff family of ligands configuring Zn(II) so as to promote complex formation sufficient to engage biomolecular targets during the process of initiation and maturation. Molecular targets of importance in adipogenesis were examined under the influence of Zn(II) and their expression levels suggest the structural composition that a Zn(II) ion might have to optimally pursue cell differentiation. Thus, a well-defined selection of binary Zn(II)-L species is tightly associated with the incurred bioactivity, thereby setting the stage for the development of efficient Zn(II) metallodrugs to combat Diabetes mellitus II.


Asunto(s)
Adipogénesis/efectos de los fármacos , Complejos de Coordinación/farmacología , Bases de Schiff/farmacología , Zinc/química , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/toxicidad , Cristalografía por Rayos X , Transportador de Glucosa de Tipo 4/metabolismo , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/toxicidad , Ligandos , Ratones , Estructura Molecular , PPAR gamma/metabolismo , Bases de Schiff/síntesis química , Bases de Schiff/química , Bases de Schiff/toxicidad
10.
J Inorg Biochem ; 176: 38-52, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28846894

RESUMEN

Cadmium is a well-known metallotoxin widespread in the environment and easily reaching cellular targets in lower and higher organisms, including humans. The form(s) of that metal ion through which it interacts with biomolecular targets in a cellular milieu are critical in cell survival. Poised to investigate the structure-specific activity of Cd(II) in a cellular environment and delve into the associated biotoxic processes, binary and ternary systems of that metal ion in the presence of the physiological α-hydroxycarboxylic acid glycolic acid and aromatic (N,N')-binders 2,2'-bipyridine (2,2'-bipy) and 4,4'-bipyridine (4,4'-bipy) were examined synthetically in aqueous media and a pH-specific fashion. The arising new materials [Cd(C2H3O3)2]n (1), [Cd(C2H3O3)(C10H8N2)(NO3)]n·nH2O (2), and {[Cd(C2H3O3)(C10H8N2)(H2O)](NO3)}n·2nH2O (3) project coordination polymers, which were physicochemically characterized through elemental analysis, FT-IR, NMR, luminescence and X-ray crystallography. The distinct spectroscopic features of 1-3, with luminescence exemplifying distinct behavior (2,3), further corroborated by crystallographic analysis, lend credence to a structure-specific selection of species employed in ensuing in vitro biological studies. The emerging results in two different cell lines (3T3-L1, Saos-2) reveal a concentration-dependent, structure-specific and cell line-specific toxicity profile of Cd(II), reflecting its coordination composition and formulation, rendering it soluble and bioavailable (1,2). Mechanistic information riding on caspase-dependent investigation unravels that metal ion's specific behavior compromising cell survival and integrity. Employment of ethylenediamine tetraacetic acid (EDTA) a) shows efficient sequestration of Cd(II) away from its toxic reactivity denoting the strength of interactions involved, and b) lends credence to further development of appropriately configured organic binders, selectively providing molecular protection from Cd(II) toxicity.


Asunto(s)
Cadmio/toxicidad , Quelantes , Glicolatos , Células 3T3-L1 , Animales , Quelantes/síntesis química , Quelantes/química , Quelantes/farmacología , Glicolatos/química , Glicolatos/farmacología , Ratones , Relación Estructura-Actividad
11.
J Inorg Biochem ; 170: 98-108, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28231455

RESUMEN

Due to its physical and chemical properties, bismuth (Bi(III)) is widely used in the treatment of several gastrointestinal and skin diseases, and infections caused by bacteria. Herein, its known antimicrobial potential was taken into consideration in the synthesis of two new hybrid ternary materials of Bi(III) with the physiological α-hydroxycarboxylic glycolic acid and 1,10-phenanthroline (phen), [Bi2(C2H2O3)2(C2H3O3)(NO3)]n. nH2O (1) and [Bi(C12H8N2)(NO3)4](C10H8N4) (2), aiming at improving its antibacterial properties. Their physicochemical characterization was carried out through elemental analysis, FT-IR, atomic absorption spectroscopy, single crystal X-ray diffraction, thermogravimetric analysis (TGA), photoluminescence, and 13C MAS-NMR techniques. The antimicrobial activity of the title complexes was directly linked to Bi(III) coordination environment and the incipient aqueous chemistry. For their antibacterial assessment, minimum inhibitory concentration (MIC), zone of inhibition (ZOI), and bacteriostatic-bacteriocidal activity were determined in various Gram positive (Staphylococcus aureus, Bacillus subtilis and Bacillus cereus) and Gram negative (Escherichia coli and Xanthomonas campestris) bacterial cultures, in reference to a positive control (ampicillin), encompassing further comparisons with literature data. The findings reveal that the new hybrid bismuth materials have significant antimicrobial effects against the employed bacteria. Specifically, 2 exhibits better antimicrobial properties than free Bi(NO3)3 and phen. On the other hand, 1 is bacteriostatic toward four microorganisms except X. campestris, with 2 being bacteriocidal toward four microorganisms except B. cereus. Collectively, the new hybrid, well-defined, and two of the rarely crystallographically characterized Bi(III) materials a) exhibit properties reflecting their physicochemical nature and reactivity, and b) are expected to contribute to the development of efficient metallodrugs against drug-resistant bacterial infections.


Asunto(s)
Antibacterianos , Bacterias/crecimiento & desarrollo , Bismuto , Glicolatos , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Bismuto/química , Bismuto/farmacología , Quelantes/síntesis química , Quelantes/química , Quelantes/farmacología , Glicolatos/síntesis química , Glicolatos/química , Glicolatos/farmacología
12.
J Inorg Biochem ; 163: 323-331, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27633760

RESUMEN

Insulin resistance is identified through numerous pathophysiological conditions, such as Diabetes mellitus II, obesity, hypertension and other metabolic syndromes. Enhancement of insulin action and\or its complete replacement by insulin-enhancing or insulin-mimetic agents seems to improve treatment of metabolic diseases. Over the last decades, intensive research has targeted the investigation of such agents, with chromium emerging as an important inorganic cofactor involved in the requisite metabolic chemistry. Chromium in its trivalent state has been shown to play a central role in carbohydrate metabolism by enhancing insulin signaling, action, and thus the sensitivity of insulin-sensitive tissues. A very likely link between diabetes and obesity is the adipose tissue, which stores energy in the form of triglycerides and releases free fatty acids. To date, there is paucity of information on the exact mechanism of the chromium effect concerning insulin-activated molecular paths, such as adipogenesis. The aim of the present study is to delve into such an effect by employing a well-defined form of chromium (Cr(III)-citrate) on the a) survival of pre- and mature adipocytes (3T3-L1), b) endogenous cell motility, and c) insulin-enhancing adipogenic capacity. The emerging results suggest that Cr(III)-citrate a) is (a)toxic in a concentration- and time-dependent manner, b) has no influence on cell motility, c) can induce 3T3-L1 pre-adipocyte differentiation into mature adipocytes through elevation of tissue specific biomarker levels (PPAR-γ, GLUT 4 and GCK), and d) exemplifies structurally-based metal-induced adipogenesis as a key process contributing to the development of future antidiabetic metallodrugs.


Asunto(s)
Adipocitos/metabolismo , Materiales Biomiméticos , Diferenciación Celular/efectos de los fármacos , Cromo , Diabetes Mellitus Tipo 2/metabolismo , Hipoglucemiantes , Insulina , Células 3T3-L1 , Animales , Antígenos de Diferenciación/metabolismo , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Cromo/química , Cromo/farmacología , Diabetes Mellitus Tipo 2/patología , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Insulina/química , Insulina/farmacología , Ratones
13.
J Inorg Biochem ; 163: 240-249, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27301643

RESUMEN

Morphological alterations compromising inter-neuronal connectivity may be directly linked to learning-memory deficits in Central Nervous System neurodegenerative processes. Cu(II)-mediated oxidative stress plays a pivotal role in regulating redox reactions generating reactive oxygen species (ROS) and reactive nitrogen species (RNS), known contributors to Alzheimer's disease (AD) pathology. The antioxidant properties of flavonoid catechin have been well-documented in neurodegenerative processes. However, the impact that catechin encapsulation in nanoparticles may have on neuronal survival and morphological lesions has been poorly demonstrated. To investigate potential effects of nano-encapsulated catechin on neuronal survival and morphological aberrations in primary rat hippocampal neurons, poly(ethyleneglycol) (PEG) and cetyltrimethylammonium bromide (CTAB)-modified silica nanoparticles were synthesized. Catechin was loaded on silica nanoparticles in a concentration-dependent fashion, and release studies were carried out. Further physicochemical characterization of the new nano-materials included elemental analysis, particle size, z-potential, FT-IR, Brunauer-Emmett-Teller (BET), thermogravimetric (TGA), and scanning electron microscopy (SEM) analysis in order to optimize material composition linked to the delivery of loaded catechin in the hippocampal cellular milieu. The findings reveal that, under Cu(II)-induced oxidative stress, the loading ability of the PEGylated/CTAB silica nanoparticles was concentration-dependent, based on their catechin release profile. The overall bio-activity profile of the new hybrid nanoparticles a) denoted their enhanced protective activity against oxidative stress and hippocampal cell survival compared to previously reported quercetin, b) revealed that morphological lesions affecting neuronal integrity can be counterbalanced at high copper concentrations, and c) warrants in-depth perusal of molecular events underlying neuronal function and degeneration, collectively linked to preventive nanotechnology in neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Catequina , Cobre , Hipocampo/metabolismo , Nanopartículas/química , Neuronas/metabolismo , Dióxido de Silicio , Enfermedad de Alzheimer/dietoterapia , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Catequina/química , Catequina/farmacología , Supervivencia Celular , Cetrimonio , Compuestos de Cetrimonio/química , Compuestos de Cetrimonio/farmacología , Cobre/química , Cobre/farmacología , Hipocampo/patología , Humanos , Ratones , Neuronas/patología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Dióxido de Silicio/química , Dióxido de Silicio/farmacología
14.
J Inorg Biochem ; 152: 123-37, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26383120

RESUMEN

Among the various roles of zinc discovered to date, its exogenous activity as an insulin mimetic agent stands as a contemporary challenge currently under investigation and a goal to pursue in the form of a metallodrug against type 2 Diabetes Mellitus. Poised to investigate the adipogenic potential of Zn(II) and appropriately configure its coordination sphere into well-defined anti-diabetic forms, (a) a series of new well-defined ternary dinuclear Zn(II)-L (L=Schiff base ligands with a variable number of alcoholic moieties) compounds were synthesized and physicochemically characterized, (b) their cytotoxicity and migration effect(s) in both pre- and mature adipocytes were assessed, (c) their ability to effectively induce cell differentiation of 3T3-L1 pre-adipocytes into mature adipocytes was established, and (d) closely linked molecular targets involving or influenced by the specific Zn(II) forms were perused through molecular biological techniques, cumulatively delineating factors involved in Zn(II)-induced adipogenesis. Collectively, the results (a) reveal the significance of key structural features of Schiff ligands coordinated to Zn(II), thereby influencing its (a)toxicity behavior and insulin-like activity, (b) project molecular targets influenced by the specific forms of Zn(II) formulating its adipogenic potential, and (c) exemplify the interwoven relationship between Zn(II)-L structural speciation and insulin mimetic biological activity, thereby suggesting ways of fine tuning structure-specific zinc-induced adipogenicity in future efficient antidiabetic drugs.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Compuestos Organometálicos/química , Bases de Schiff/química , Zinc/química , Células 3T3 , Adipocitos/citología , Animales , Ratones , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/farmacología
15.
J Inorg Biochem ; 151: 150-63, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26198972

RESUMEN

In the emerging issue of enhanced multi-resistant properties in infectious pathogens, new nanomaterials with optimally efficient antibacterial activity and lower toxicity than other species attract considerable research interest. In an effort to develop such efficient antibacterials, we a) synthesized acid-catalyzed silica-gel matrices, b) evaluated the suitability of these matrices as potential carrier materials for controlled release of ZnSO4 and a new Zn(II) binary complex with a suitably designed well-defined Schiff base, and c) investigated structural and textural properties of the nanomaterials. Physicochemical characterization of the (empty-loaded) silica-nanoparticles led to an optimized material configuration linked to the delivery of the encapsulated antibacterial zinc load. Entrapment and drug release studies showed the competence of hybrid nanoparticles with respect to the a) zinc loading capacity, b) congruence with zinc physicochemical attributes, and c) release profile of their zinc load. The material antimicrobial properties were demonstrated against Gram-positive (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus) and negative (Escherichia coli, Pseudomonas aeruginosa, Xanthomonas campestris) bacteria using modified agar diffusion methods. ZnSO4 showed less extensive antimicrobial behavior compared to Zn(II)-Schiff, implying that the Zn(II)-bound ligand enhances zinc antimicrobial properties. All zinc-loaded nanoparticles were less antimicrobially active than zinc compounds alone, as encapsulation controls their release, thereby attenuating their antimicrobial activity. To this end, as the amount of loaded zinc increases, the antimicrobial behavior of the nano-agent improves. Collectively, for the first time, sol-gel zinc-loaded silica-nanoparticles were shown to exhibit well-defined antimicrobial activity, justifying due attention to further development of antibacterial nanotechnology.


Asunto(s)
Antiinfecciosos/química , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Dióxido de Silicio/química , Zinc/química , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Química Orgánica , Cristalografía por Rayos X , Geles/química , Ligandos , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Estructura Molecular , Polimetil Metacrilato/química , Bases de Schiff/química , Relación Estructura-Actividad , Difracción de Rayos X
16.
J Inorg Biochem ; 147: 99-115, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25920352

RESUMEN

Among the various roles of vanadium in the regulation of intracellular signaling, energy metabolism and insulin mimesis, its exogenous activity stands as a contemporary challenge currently under investigation and a goal to pursue as a metallodrug against Diabetes mellitus II. In this regard, the lipogenic activity of vanadium linked to the development of well-defined anti-diabetic vanadodrugs has been investigated through: a) specifically designing and synthesizing Schiff base organic ligands L, bearing a variable number of terminal alcohols, b) a series of well-defined soluble binary V(V)-L compounds synthesized and physicochemically characterized, c) a study of their cytotoxic effect and establishment of adipogenic activity in 3T3-L1 fibroblasts toward mature adipocytes, and d) biomarker examination of a closely-linked molecular target involving or influenced by the specific V(V) forms, cumulatively delineating factors involved in potential pathways linked to V(V)-induced insulin-like activity. Collectively, the results a) project the importance of specific structural features in Schiff ligands bound to V(V), thereby influencing the emergence of its (a)toxicity and for the first time its insulin-like activity in pre-adipocyte differentiation, b) contribute to the discovery of molecular targets influenced by the specific vanadoforms seeking to induce glucose uptake, and c) indicate an interplay of V(V) structural speciation and cell-differentiation biological activity, thereby gaining insight into vanadium's potential as a future metallodrug in Diabetes mellitus.


Asunto(s)
Adipocitos/citología , Adipogénesis , Complejos de Coordinación/farmacología , Fibroblastos/efectos de los fármacos , Bases de Schiff/química , Vanadio/química , Células 3T3 , Animales , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Fibroblastos/citología , Ratones , Relación Estructura-Actividad
17.
Inorg Chem ; 52(24): 13849-60, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24266671

RESUMEN

Iron is an essential metal ion with numerous roles in biological systems and advanced abiotic materials. D-(-)-quinic acid is a cellular metal ion chelator, capable of promoting reactions with metal M(II,III) ions under pH-specific conditions. In an effort to comprehend the chemical reactivity of well-defined forms of Fe(III)/Fe(II) toward α-hydroxycarboxylic acids, pH-specific reactions of: (a) [Fe3O(CH3COO)6(H2O)3]·(NO3)·4H2O with D-(-)-quinic acid in a molar ratio 1:3 at pH 2.5 and (b) Mohr's salt with D-(-)-quinic acid in a molar ratio 1:3 at pH 7.5, respectively, led to the isolation of the first two heptanuclear Fe(III)-quinato complexes, [Fe7O3(OH)3(C7H10O6)6]·20.5H2O (1) and (NH4)[Fe7(OH)6(C7H10O6)6]·(SO4)2·18H2O (2). Compounds 1 and 2 were characterized by analytical, spectroscopic (UV-vis, FT-IR, EPR, and Mössbauer) techniques, CV, TGA-DTG, and magnetic susceptibility measurements. The X-ray structures of 1 and 2 reveal heptanuclear assemblies of six Fe(III) ions bound by six doubly deprotonated quinates and one Fe(III) ion bound by oxido- and hydroxido-bridges (1), and hydroxido-bridges (2), all in an octahedral fashion. Mössbauer spectroscopy on 1 and 2 suggests the presence of Fe(III) ions in an all-oxygen environment. EPR measurements indicate that 1 and 2 retain their structure in solution, while magnetic measurements reveal an overall antiferromagnetic behavior with a ground state S = 3/2. The collective physicochemical properties of 1 and 2 suggest that the (a) nature of the ligand, (b) precursor form of iron, (c) pH, and (d) molecular stoichiometry are key factors influencing the chemical reactivity of the binary Fe(II,III)-hydroxycarboxylato systems, their aqueous speciation, and ultimately through variably emerging hydrogen bonding interactions, the assembly of multinuclear Fe(III)-hydroxycarboxylato clusters with distinct lattice architectures of specific dimensionality (2D-3D) and magnetic signature.

18.
Inorg Chem ; 52(9): 4963-76, 2013 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-23614821

RESUMEN

Synthetic efforts linked to the design of defined lattice dimensionality and architecture materials in the binary/ternary systems of Cu(II) with butylene diamine tetra(methylene phosphonic acid) (H8BDTMP) and heterocyclic organic chelators (pyridine and 1,10-phenanthroline) led to the isolation of new copper organophosphonate compounds, namely, Na6[Cu2(BDTMP)(H2O)4]·[Cu2(BDTMP)(H2O)4]0.5·26H2O (1), [Cu2(H4BDTMP)(py)4]·2H2O (2), and [Cu2(H4BDTMP)(phen)2]n·6.6nH2O·1.5nMeOH (3). 1-3 are the first compounds isolated from the Cu(II)-BDTMP family of species. They were characterized by elemental analysis, spectroscopic techniques (FT-IR, UV-vis), magnetic susceptibility, TGA-DTG, cyclic voltammetry, and X-ray crystallography. The lattice in 1 reveals the presence of discrete dinuclear Cu(II) units bound to BDTMP(8-) and water molecules in a square pyramidal geometry. The molecular lattice of 2 reveals the presence of ternary dinuclear assemblies of Cu(II) ions bound to H4BDTMP(4-) and pyridine in a square pyramidal environment. The molecular lattice of 3 reveals the presence of dinuclear assemblies of Cu(II) ions bound to H4BDTMP(4-) and 1,10-phenanthroline in a square pyramidal environment, with the organophosphonate ligand serving as the connecting link to abutting dinuclear Cu(II) assemblies in a ternary polymeric system. The magnetic susceptibility data on 1, 2, and 3 suggest that compounds 1 and 3 exhibit a stronger antiferromagnetic behavior than 2, which is also confirmed from magnetization measurements. The physicochemical profiles of 1-3 (a) earmark the influence of the versatile H8BDTMP ligand as a metal ion binder on the chemical reactivity in binary and ternary systems of Cu(II) in aqueous and nonaqueous media and (b) denote the correlation of ligand hydrophilicity, aromaticity, denticity, charge, and H-bonding interactions with emerging defined Cu(II)-H8BDTMP structures of distinct lattice identity and spectroscopic-magnetic properties. Collectively, such structural and chemical factors formulate the interplay and contribution of binary and ternary interactions to lattice architecture and specified properties of new Cu(II)-organophosphonate materials with defined 2D-3D dimensionality.

19.
Inorg Chem ; 51(17): 9282-96, 2012 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-22900818

RESUMEN

Hydrothermal pH-specific reactivity in the binary/ternary systems of Pb(II) with the carboxylic acids N-hydroxyethyl-iminodiacetic acid (Heida), 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid (Dpot), and 1,10-phenanthroline (Phen) afforded the new well-defined crystalline compounds [Pb(Heida)](n)·nH(2)O(1), [Pb(Phen)(Heida)]·4H(2)O(2), and [Pb(3)(NO(3))(Dpot)](n)(3). All compounds were characterized by elemental analysis, FT-IR, solution or/and solid-state NMR, and single-crystal X-ray diffraction. The structures in 1-2 reveal the presence of a Pb(II) center coordinated to one Heida ligand, with 1 exhibiting a two-dimensional (2D) lattice extending to a three-dimensional (3D) one through H-bonding interactions. The concurrent aqueous speciation study of the binary Pb(II)-Heida system projects species complementing the synthetic efforts, thereby lending credence to a global structural speciation strategy in investigating binary/ternary Pb(II)-Heida/Phen systems. The involvement of Phen in 2 projects the significance of nature and reactivity potential of N-aromatic chelators, disrupting the binary lattice in 1 and influencing the nature of the ultimately arising ternary 3D lattice. 3 is a ternary coordination polymer, where Pb(II)-Dpot coordination leads to a 2D metal-organic-framework material with unique architecture. The collective physicochemical properties of 1-3 formulate the salient features of variable dimensionality metal-organic-framework lattices in binary/ternary Pb(II)-(hydroxy-carboxylate) structures, based on which new Pb(II) materials with distinct architecture and spectroscopic signature can be rationally designed and pursued synthetically.


Asunto(s)
Ácidos Carboxílicos/química , Calor , Plomo/química , Compuestos Organometálicos/química , Análisis Espectral , Agua/química , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Modelos Moleculares , Conformación Molecular , Compuestos Organometálicos/síntesis química , Soluciones
20.
Inorg Chem ; 51(11): 6056-69, 2012 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-22621332

RESUMEN

Vanadium involvement in cellular processes requires deep understanding of the nature and properties of its soluble and bioavailable forms arising in aqueous speciations of binary and ternary systems. In an effort to understand the ternary vanadium-H(2)O(2)-ligand interactions relevant to that metal ion's biological role, synthetic efforts were launched involving the physiological ligands betaine (Me(3)N(+)CH(2)CO(2)(-)) and H(2)O(2). In a pH-specific fashion, V(2)O(5), betaine, and H(2)O(2) reacted and afforded three new, unusual, and unique compounds, consistent with the molecular formulation K(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}]·H(2)O (1), (NH(4))(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}]·0.75H(2)O (2), and {Na(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}(2)]}(n)·4nH(2)O (3). All complexes 1-3 were characterized by elemental analysis; UV/visible, FT-IR, Raman, and NMR spectroscopy in solution and the solid state; cyclic voltammetry; TGA-DTG; and X-ray crystallography. The structures of 1 and 2 reveal the presence of unusual ternary dinuclear vanadium-tetraperoxido-betaine complexes containing [(V(V)═O)(O(2))(2)] units interacting through long V-O bonds. The two V(V) ions are bridged through the oxygen terminal of one of the peroxide groups bound to the vanadium centers. The betaine ligand binds only one of the two V(V) ions. In the case of the third complex 3, the two vanadium centers are not immediate neighbors, with Na(+) ions (a) acting as efficient oxygen anchors and through Na-O bonds holding the two vanadium ions in place and (b) providing for oxygen-containing ligand binding leading to a polymeric lattice. In 1 and 3, interesting 2D (honeycomb) and 1D (zigzag chains) topologies of potassium nine-coordinate polyhedra (1) and sodium octahedra (3), respectively, form. The collective physicochemical properties of the three ternary species 1-3 project the chemical role of the low molecular mass biosubstrate betaine in binding V(V)-diperoxido units, thereby stabilizing a dinuclear V(V)-tetraperoxido dianion. Structural comparisons of the anions in 1-3 with other known dinuclear V(V)-tetraperoxido binary anionic species provide insight into the chemical reactivity of V(V)-diperoxido systems and their potential link to cellular events such as insulin mimesis and anitumorigenicity modulated by the presence of betaine.


Asunto(s)
Betaína/química , Complejos de Coordinación/química , Peróxido de Hidrógeno/química , Vanadio/química , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA