Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
J Transl Med ; 22(1): 902, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367484

RESUMEN

BACKGROUND: Breast cancer (BC) is the most common malignancy in women. Immunotherapy has revolutionized treatment options in many malignancies, and the introduction of immune checkpoint inhibition yielded beneficial results also in BC. However, many BC patients are ineligible for this T cell-based therapy, others do not respond or only briefly. Thus, there remains a high medical need for new therapies, particularly for triple-negative BC. CD276 (B7-H3) is overexpressed in several tumors on both tumor cells and tumor vessels, constituting a promising target for immunotherapy. METHODS: We analyzed tumor samples of 25 patients using immunohistochemistry to assess CD276 levels. The potential of CC-3, a novel bispecific CD276xCD3 antibody, for BC treatment was evaluated using various functional in vitro assays. RESULTS: Pronounced expression of CD276 was observed in all analyzed tumor samples including triple negative BC. In analyses with BC cells, CC-3 induced profound T cell activation, proliferation, and T cell memory subset formation. Moreover, treatment with CC-3 induced cytokine secretion and potent tumor cell lysis. CONCLUSION: Our findings characterize CD276 as promising target and preclinically document the therapeutic potential of CC-3 for BC treatment, providing a strong rationale for evaluation of CC-3 in BC patients in a clinical trial for which the recruitment has recently started.


Asunto(s)
Antígenos B7 , Neoplasias de la Mama , Inmunoterapia , Linfocitos T , Humanos , Femenino , Antígenos B7/metabolismo , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/terapia , Neoplasias de la Mama/patología , Inmunoterapia/métodos , Linfocitos T/inmunología , Línea Celular Tumoral , Persona de Mediana Edad , Activación de Linfocitos/inmunología , Proliferación Celular , Anciano , Citocinas/metabolismo , Adulto
2.
Front Oncol ; 14: 1441625, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39252947

RESUMEN

Chronic lymphocytic leukemia (CLL) is the most common form of leukemia among adults in Western countries. Despite the introduction of targeted therapies, including first-line Bruton's tyrosine kinase inhibitor (BTKi) treatment, CLL remains largely incurable. Frequent disease relapses occur due to remaining treatment-resistant CLL cells, calling for novel therapies to eliminate minimal residual disease (MRD). Peptide-based vaccination targeting human leucocyte antigen (HLA)-presented CLL-associated antigens represents a promising, low-side-effect therapeutic option to optimize treatment responses and eliminate residual tumor cells by inducing an anti-leukemic immune response. The iVAC-XS15-CLL01 trial is an open-label, first-in-human (FIH) Phase I trial, evaluating the CLL-VAC-XS15 vaccine in CLL patients undergoing BTKi-based therapy. The vaccine was developed from HLA-presented CLL-associated antigen peptides, identified through comparative mass-spectrometry-based immunopeptidome analyses of CLL versus healthy samples in a previous study. To facilitate rapid and cost-effective deployment, vaccine peptides are selected for each patient from a pre-manufactured "peptide warehouse" based on the patient's individual HLA allotype and CLL immunopeptidome. The trial enrolls 20 CLL patients, who receive up to three doses of the vaccine, adjuvanted with the toll-like-receptor (TLR) 1/2 ligand XS15 and emulsified in Montanide ISA 51 VG. The primary objective of the iVAC-XS15-CLL01 trial is to assess the safety and immunogenicity of the CLL-VAC-XS15 vaccine. Secondary objectives are to evaluate the vaccine impact on MRD, progression-free survival, and overall survival, as well as comprehensive immunophenotyping to characterize vaccine-induced T-cell responses. This Phase I trial aims to advance CLL treatment by enhancing immune-mediated disease clearance and guiding the design of subsequent Phase II/III trials to implement a new therapeutic strategy for CLL patients.

3.
Blood Adv ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39348668

RESUMEN

Measurable residual disease (MRD) monitoring in acute myeloid leukemia (AML) with FLT3 internal tandem duplication (FLT3-ITDpos) was hampered by the broad heterogeneity of ITD mutations. Using our recently developed FLT3-ITD paired-end next-generation sequencing (NGS)-based MRD assay with a limit of detection of 10-4 to 10-5, we evaluated the prognostic impact of MRD at different time-points in 157 FLT3-ITDpos AML patients enrolled in the AMLSG16-10 trial (NCT01477606) combining intensive chemotherapy with midostaurin followed by midostaurin maintenance. Achievement of MRD negativity (MRDneg) after two cycles of chemotherapy (Cy2) observed in 111/142 (78%) patients predicted for superior 4-year rates of cumulative incidence of relapse (CIR) (4y-CIR, 26% vs 46%; P=.001) and overall survival (OS) (4y-OS, 70% vs 44%; P=.012). This survival advantage was also seen for patients undergoing allogeneic hematopoietic-cell transplantation in first complete remission (4y-CIR, 14% vs 39%; P=.001; 4y-OS, 71% vs 49%; P=.029). Multivariate models for CIR and OS after Cy2 revealed FLT3-ITD MRDneg as the only consistent favorable variable for CIR (HR, 0.29; P=.006) and OS (HR, 0.39; P=.018). NPM1 co-mutation correlated with deeper molecular response as reflected by stronger MRD reduction and higher rate of FLT3-ITD MRDneg after Cy2. During follow-up, conversion from MRDneg to MRDpos was a strong, independent factor for inferior CIR (HR, 16.64; P<.001) and OS (HR, 4.05; P<.001). NGS-based FLT3-ITD MRD monitoring allows for the identification of patients at high risk of relapse and death following intensive chemotherapy plus midostaurin. Using NGS-based technology, FLT3-ITD emerges as a novel, clinically highly relevant target for MRD monitoring.

4.
Front Immunol ; 15: 1391954, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765008

RESUMEN

Sarcomas are rare and heterogeneous malignancies that are difficult to treat. Approximately 50% of patients diagnosed with sarcoma develop metastatic disease with so far very limited treatment options. The transmembrane protein B7-H3 reportedly is expressed in various malignancies, including different sarcoma subtypes. In several cancer entities B7-H3 expression is associated with poor prognosis. In turn, B7-H3 is considered a promising target for immunotherapeutic approaches. We here report on the preclinical characterization of a B7-H3xCD3 bispecific antibody in an IgG-based format, termed CC-3, for treatment of different sarcoma subtypes. We found B7-H3 to be expressed on all sarcoma cells tested and expression on sarcoma patients correlated with decreased progression-free and overall survival. CC-3 was found to elicit robust T cell responses against multiple sarcoma subtypes, resulting in significant activation, release of cytokines and effector molecules. In addition, CC-3 promoted T cell proliferation and differentiation, resulting in the generation of memory T cell subsets. Finally, CC-3 induced potent target cell lysis in a target cell restricted manner. Based on these results, a clinical trial evaluating CC-3 in soft tissue sarcoma is currently in preparation.


Asunto(s)
Anticuerpos Biespecíficos , Antígenos B7 , Sarcoma , Humanos , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Sarcoma/inmunología , Sarcoma/tratamiento farmacológico , Antígenos B7/inmunología , Antígenos B7/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Línea Celular Tumoral , Neoplasias Óseas/inmunología , Neoplasias Óseas/patología , Femenino , Masculino , Animales , Activación de Linfocitos/inmunología , Persona de Mediana Edad , Complejo CD3/inmunología , Anciano , Proliferación Celular , Adulto
5.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612935

RESUMEN

Ligands of the natural killer group 2D (NKG2DL) family are expressed on malignant cells and are usually absent from healthy tissues. Recognition of NKG2DLs such as MICA/B and ULBP1-3 by the activating immunoreceptor NKG2D, expressed by NK and cytotoxic T cells, stimulates anti-tumor immunity in breast cancer. Upregulation of membrane-bound NKG2DLs in breast cancer has been demonstrated by immunohistochemistry. Tumor cells release NKG2DLs via proteolytic cleavage as soluble (s)NKG2DLs, which allows for effective immune escape and is associated with poor prognosis. In this study, we collected serum from 140 breast cancer (BC) and 20 ductal carcinoma in situ (DCIS) patients at the time of initial diagnosis and 20 healthy volunteers (HVs). Serum levels of sNKG2DLs were quantified through the use of ELISA and correlated with clinical data. The analyzed sNKG2DLs were low to absent in HVs and significantly higher in BC patients. For some of the ligands analyzed, higher sNKG2DLs serum levels were associated with the classification of malignant tumor (TNM) stage and grading. Low sMICA serum levels were associated with significantly longer progression-free (PFS) and overall survival (OS). In conclusion, we provide the first insights into sNKG2DLs in BC patients and suggest their potential role in tumor immune escape in breast cancer. Furthermore, our observations suggest that serum sMICA levels may serve as a prognostic parameter in the patients analyzed in this study.


Asunto(s)
Neoplasias de la Mama , Carcinoma Intraductal no Infiltrante , Humanos , Femenino , Investigadores , Ensayo de Inmunoadsorción Enzimática , Estado de Salud
6.
Blood Cancer J ; 14(1): 67, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637557

RESUMEN

Acute myeloid leukemia (AML) remains a therapeutic challenge despite recent therapeutic advances. Although monoclonal antibodies (mAbs) engaging natural killer (NK) cells via antibody-dependent cellular cytotoxicity (ADCC) hold promise in cancer therapy, almost none have received clinical approval for AML, so far. Recently, CD276 (B7-H3) has emerged as a promising target for AML immunotherapy, due to its high expression on leukemic blasts of AML patients. Here, we present the preclinical development of the Fc-optimized CD276 mAb 8H8_SDIE with enhanced CD16 affinity. We demonstrate that 8H8_SDIE specifically binds to CD276 on AML cell lines and primary AML cells and induces pronounced NK cell activation and degranulation as measured by CD69, CD25, and CD107a. Secretion of IFNγ, TNF, granzyme B, granulysin, and perforin, which mediate NK cell effector functions, was induced by 8H8_SDIE. A pronounced target cell-restricted lysis of AML cell lines and primary AML cells was observed in cytotoxicity assays using 8H8_SDIE. Finally, xenograft models with 8H8_SDIE did not cause off-target immune activation and effectively inhibited leukemia growth in vivo. We here present a novel attractive immunotherapeutic compound that potently induces anti-leukemic NK cell reactivity in vitro and in vivo as treatment option for AML.


Asunto(s)
Células Asesinas Naturales , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Citotoxicidad Celular Dependiente de Anticuerpos , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Antígenos B7/metabolismo , Antígenos B7/farmacología
7.
Front Oncol ; 14: 1367450, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606105

RESUMEN

The DNAJB1-PRKACA fusion transcript was identified as the oncogenic driver of tumor pathogenesis in fibrolamellar hepatocellular carcinoma (FL-HCC), also known as fibrolamellar carcinoma (FLC), as well as in other tumor entities, thus representing a broad target for novel treatment in multiple cancer entities. FL-HCC is a rare primary liver tumor with a 5-year survival rate of only 45%, which typically affects young patients with no underlying primary liver disease. Surgical resection is the only curative treatment option if no metastases are present at diagnosis. There is no standard of care for systemic therapy. Peptide-based vaccines represent a low side-effect approach relying on specific immune recognition of tumor-associated human leucocyte antigen (HLA) presented peptides. The induction (priming) of tumor-specific T-cell responses against neoepitopes derived from gene fusion transcripts by peptide-vaccination combined with expansion of the immune response and optimization of immune function within the tumor microenvironment achieved by immune-checkpoint-inhibition (ICI) has the potential to improve response rates and durability of responses in malignant diseases. The phase I clinical trial FusionVAC22_01 will enroll patients with FL-HCC or other cancer entities carrying the DNAJB1-PRKACA fusion transcript that are locally advanced or metastatic. Two doses of the DNAJB1-PRKACA fusion-based neoepitope vaccine Fusion-VAC-XS15 will be applied subcutaneously (s.c.) with a 4-week interval in combination with the anti-programmed cell death-ligand 1 (PD-L1) antibody atezolizumab starting at day 15 after the first vaccination. Anti-PD-L1 will be applied every 4 weeks until end of the 54-week treatment phase or until disease progression or other reason for study termination. Thereafter, patients will enter a 6 months follow-up period. The clinical trial reported here was approved by the Ethics Committee II of the University of Heidelberg (Medical faculty of Mannheim) and the Paul-Ehrlich-Institute (P-00540). Clinical trial results will be published in peer-reviewed journals. Trial registration numbers: EU CT Number: 2022-502869-17-01 and ClinicalTrials.gov Registry (NCT05937295).

8.
Sci Transl Med ; 16(737): eadh1988, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446900

RESUMEN

Despite the advances in cancer treatment achieved, for example, by the CD20 antibody rituximab, an urgent medical need remains to optimize the capacity of such antibodies to induce antibody-dependent cellular cytotoxicity (ADCC) that determines therapeutic efficacy. The cytokine IL-15 stimulates proliferation, activation, and cytolytic capacity of NK cells, but broad clinical use is prevented by short half-life, poor accumulation at the tumor site, and severe toxicity due to unspecific immune activation. We here report modified immunocytokines consisting of Fc-optimized CD19 and CD20 antibodies fused to an IL-15 moiety comprising an L45E-E46K double mutation (MIC+ format). The E46K mutation abrogated binding to IL-15Rα, thereby enabling substitution of physiological trans-presentation by target binding and thus conditional IL-15Rßγ stimulation, whereas the L45E mutation optimized IL-15Rßγ agonism and producibility. In vitro analysis of NK activation, anti-leukemia reactivity, and toxicity using autologous and allogeneic B cells confirmed target-dependent function of MIC+ constructs. Compared with Fc-optimized CD19 and CD20 antibodies, MIC+ constructs mediated superior target cell killing and NK cell proliferation. Mouse models using luciferase-expressing human NALM-6 lymphoma cells, patient acute lymphoblastic leukemia (ALL) cells, and murine EL-4 lymphoma cells transduced with human CD19/CD20 as targets and human and murine NK cells as effectors, respectively, confirmed superior and target-dependent anti-leukemic activity. In summary, MIC+ constructs combine the benefits of Fc-optimized antibodies and IL-15 cytokine activity and mediate superior NK cell immunity with potentially reduced side effects. They thus constitute a promising new immunotherapeutic approach shown here for B cell malignancies.


Asunto(s)
Interleucina-15 , Linfoma , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales , Anticuerpos , Antígenos CD19 , Citocinas , Fragmentos Fc de Inmunoglobulinas
9.
Front Oncol ; 14: 1351901, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410109

RESUMEN

Introduction: Colorectal cancer (CRC) is the third most common cancer worldwide in men and women. In the metastasized stage, treatment options and prognosis are limited. To address the high medical need of this patient population, we generated a CD276xCD3 bispecific antibody termed CC-3. CD276 is expressed on CRC cells and on tumor vessels, thereby allowing for a "dual" anticancer effect. Methods and analysis: This first-in-human clinical study is planned as a prospective multicenter trial, enrolling patients with metastatic CRC after three lines of therapy. During the dose-escalation part, initially, an accelerated titration design with single-patient cohorts is employed. Here, each patient will receive a fixed dose level (starting with 50 µg for the first patient); however, between patients, dose level may be increased by up to 100%, depending on the decision of a safety review committee. Upon occurrence of any adverse events (AEs) grade ≥2, dose-limiting toxicity (DLT), or reaching a dose level of ≥800 µg, the escalation will switch to a standard 3 + 3 dose design. After maximum tolerated dose (MTD) has been determined, defined as no more than one of the six patients experiencing DLT, an additional 14 patients receive CC-3 at the MTD level in the dose-expansion phase. Primary endpoints are incidence and severity of AEs, as well as the best objective response to the treatment according to response evaluation criteria in solid tumors (RECIST) 1.1. Secondary endpoints include overall safety, efficacy, survival, quality of life, and pharmacokinetic investigations. Ethics and dissemination: The CD276xCD3 study was approved by the Ethics Committee of the Medical Faculty of the Heinrich Heine University Düsseldorf and the Paul-Ehrlich-Institut (P00702). Clinical trial results will be published in peer-reviewed journals. Trial registration numbers: ClinicalTrials.cov Registry (NCT05999396) and EU ClinicalTrials Registry (EU trial number 2022-503084-15-00).

10.
Front Immunol ; 15: 1343929, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38322253

RESUMEN

Pancreatic cancer is a highly lethal disease with limited treatment options. Hence, there is a considerable medical need for novel treatment strategies. Monoclonal antibodies (mAbs) have significantly improved cancer therapy, primarily due to their ability to stimulate antibody-dependent cellular cytotoxicity (ADCC), which plays a crucial role in their therapeutic efficacy. As a result, significant effort has been focused on improving this critical function by engineering mAbs with Fc regions that have increased affinity for the Fc receptor CD16 expressed on natural killer (NK) cells, the major cell population that mediates ADCC in humans. Here we report on the preclinical characterization of a mAb directed to the target antigen B7-H3 (CD276) containing an Fc part with the amino acid substitutions S239D/I332E to increase affinity for CD16 (B7-H3-SDIE) for the treatment of pancreatic cancer. B7-H3 (CD276) is highly expressed in many tumor entities, whereas expression on healthy tissues is more limited. Our findings confirm high expression of B7-H3 on pancreatic cancer cells. Furthermore, our study shows that B7-H3-SDIE effectively activates NK cells against pancreatic cancer cells in an antigen-dependent manner, as demonstrated by the analysis of NK cell activation, degranulation and cytokine release. The activation of NK cells resulted in significant tumor cell lysis in both short-term and long-term cytotoxicity assays. In conclusion, B7-H3-SDIE constitutes a promising agent for the treatment of pancreatic cancer.


Asunto(s)
Inmunoterapia , Neoplasias Pancreáticas , Humanos , Inmunoterapia/métodos , Citotoxicidad Celular Dependiente de Anticuerpos , Anticuerpos Monoclonales , Células Asesinas Naturales , Neoplasias Pancreáticas/metabolismo , Antígenos B7/metabolismo
11.
Int J Infect Dis ; 139: 69-77, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38016500

RESUMEN

OBJECTIVES: T cell immunity is key for the control of viral infections including SARS-CoV-2, in particular with regard to immune memory and protection against arising genetic variants. METHODS: We recently evaluated a peptide-based SARS-CoV-2 T cell activator termed CoVac-1 in a first-in-human trial in healthy adults. Here, we report on long-term safety and efficacy data of CoVac-1 until month 12. RESULTS: CoVac-1 is well tolerated without long-term immune-related side effects and induces long-lasting anti-viral T cell responses in 100% of study participants, with potent expandability of clusters of differentiation (CD4+) and CD8+ T cells targeting multiple different CoVac-1 T cell epitopes. T cell responses were associated with stronger injection site reaction. Beyond induction of T cell immunity, 89% of subjects developed CoVac-1-specific immunoglobulin G antibodies which associated with the intensity of the T cell response, indicating that CoVac-1-specific CD4+ T cells support the induction of B-cell responses. Vaccination with approved COVID-19 vaccines boosted CoVac-1-specific T cell responses. Overall, a low SARS-CoV-2 infection rate (8.3%) was observed. CONCLUSION: Together, a single application of CoVac-1 elicits long-lived and broad SARS-CoV-2-specific T cell immunity, which further supports the current evaluation of our T cell activator in patients with congenital or acquired B-cell defects.


Asunto(s)
COVID-19 , Adulto , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19 , Linfocitos T CD8-positivos , SARS-CoV-2 , Péptidos , Anticuerpos Antivirales
12.
Nat Commun ; 14(1): 7472, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978195

RESUMEN

T cell recognition of human leukocyte antigen (HLA)-presented tumor-associated peptides is central for cancer immune surveillance. Mass spectrometry (MS)-based immunopeptidomics represents the only unbiased method for the direct identification and characterization of naturally presented tumor-associated peptides, a key prerequisite for the development of T cell-based immunotherapies. This study reports on the implementation of ion mobility separation-based time-of-flight (TOFIMS) MS for next-generation immunopeptidomics, enabling high-speed and sensitive detection of HLA-presented peptides. Applying TOFIMS-based immunopeptidomics, a novel extensive benignTOFIMS dataset was generated from 94 primary benign samples of solid tissue and hematological origin, which enabled the expansion of benign reference immunopeptidome databases with > 150,000 HLA-presented peptides, the refinement of previously described tumor antigens, as well as the identification of frequently presented self antigens and not yet described tumor antigens comprising low abundant mutation-derived neoepitopes that might serve as targets for future cancer immunotherapy development.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Neoplasias , Humanos , Antígenos de Neoplasias , Espectrometría de Masas/métodos , Antígenos HLA , Neoplasias/terapia , Péptidos/química , Antígenos de Histocompatibilidad Clase II
13.
Blood Cancer Discov ; 4(6): 468-489, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37847741

RESUMEN

Therapy-resistant leukemia stem and progenitor cells (LSC) are a main cause of acute myeloid leukemia (AML) relapse. LSC-targeting therapies may thus improve outcome of patients with AML. Here we demonstrate that LSCs present HLA-restricted antigens that induce T-cell responses allowing for immune surveillance of AML. Using a mass spectrometry-based immunopeptidomics approach, we characterized the antigenic landscape of patient LSCs and identified AML- and AML/LSC-associated HLA-presented antigens absent from normal tissues comprising nonmutated peptides, cryptic neoepitopes, and neoepitopes of common AML driver mutations of NPM1 and IDH2. Functional relevance of shared AML/LSC antigens is illustrated by presence of their cognizant memory T cells in patients. Antigen-specific T-cell recognition and HLA class II immunopeptidome diversity correlated with clinical outcome. Together, these antigens shared among AML and LSCs represent prime targets for T cell-based therapies with potential of eliminating residual LSCs in patients with AML. SIGNIFICANCE: The elimination of therapy-resistant leukemia stem and progenitor cells (LSC) remains a major challenge in the treatment of AML. This study identifies and functionally validates LSC-associated HLA class I and HLA class II-presented antigens, paving the way to the development of LSC-directed T cell-based immunotherapeutic approaches for patients with AML. See related commentary by Ritz, p. 430 . This article is featured in Selected Articles from This Issue, p. 419.


Asunto(s)
Antígenos HLA , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Péptidos , Células Madre
14.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37685962

RESUMEN

Triple-negative breast cancer (TNBC) is a particularly aggressive subtype of breast cancer with a poor response rate to conventional systemic treatment and high relapse rates. Members of the natural killer group 2D ligand (NKG2DL) family are expressed on cancer cells but are typically absent from healthy tissues; thus, they are promising tumor antigens for novel immunotherapeutic approaches. We developed bispecific fusion proteins (BFPs) consisting of the NKG2D receptor domain targeting multiple NKG2DLs, fused to either anti-CD3 (NKG2D-CD3) or anti-CD16 (NKG2D-CD16) Fab fragments. First, we characterized the expression of the NKG2DLs (MICA, MICB, ULBP1-4) on TNBC cell lines and observed the highest surface expression for MICA and ULBP2. Targeting TNBC cells with NKG2D-CD3/CD16 efficiently activated both NK and T cells, leading to their degranulation and cytokine release and lysis of TNBC cells. Furthermore, PBMCs from TNBC patients currently undergoing chemotherapy showed significantly higher NK and T cell activation and tumor cell lysis when stimulated with NKG2D-CD3/CD16. In conclusions, BFPs activate and direct the NK and T cells of healthy and TNBC patients against TNBC cells, leading to efficient eradication of tumor cells. Therefore, NKG2D-based NK and T cell engagers could be a valuable addition to the treatment options for TNBC patients.


Asunto(s)
Proteínas Recombinantes de Fusión , Neoplasias de la Mama Triple Negativas , Humanos , Administración Cutánea , Agresión , Ligandos , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Proteínas Recombinantes de Fusión/uso terapéutico , Receptores de IgG , Complejo CD3
15.
J Hematol Oncol ; 16(1): 96, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37587502

RESUMEN

BACKGROUND: About half of AML patients achieving complete remission (CR) display measurable residual disease (MRD) and eventually relapse. FLYSYN is an Fc-optimized antibody for eradication of MRD directed to FLT3/CD135, which is abundantly expressed on AML cells. METHODS: This first-in-human, open-label, single-arm, multicenter trial included AML patients in CR with persisting or increasing MRD and evaluated safety/tolerability, pharmacokinetics and preliminary efficacy of FLYSYN at different dose levels administered intravenously (cohort 1-5: single dose of 0.5 mg/m2, 1.5 mg/m2, 5 mg/m2, 15 mg/m2, 45 mg/m2; cohort 6: 15 mg/m2 on day 1, 15 and 29). Three patients were treated per cohort except for cohorts 4 and 6, which were expanded to nine and ten patients, respectively. Primary objective was safety, and secondary efficacy objective was ≥ 1 log MRD reduction or negativity in bone marrow. RESULTS: Overall, 31 patients were treated, of whom seven patients (22.6%) experienced a transient decrease in neutrophil count (two grade 3, others ≤ grade 2). No infusion-related reaction or dose-limiting toxicity was observed. Adverse events (AEs) were mostly mild to moderate, with the most frequent AEs being hematologic events and laboratory abnormalities. Response per predefined criteria was documented in 35% of patients, and two patients maintained MRD negativity until end of study. Application of 45 mg/m2 FLYSYN as single or cumulative dose achieved objective responses in 46% of patients, whereas 28% responded at lower doses. CONCLUSIONS: FLYSYN monotherapy is safe and well-tolerated in AML patients with MRD. Early efficacy data are promising and warrant further evaluation in an up-coming phase II trial. Trial registration This clinical is registered on clinicaltrials.gov (NCT02789254).


Asunto(s)
Antineoplásicos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Leucemia Mieloide Aguda , Humanos , Anticuerpos Monoclonales , Fragmentos Fc de Inmunoglobulinas , Neoplasia Residual , Leucemia Mieloide Aguda/tratamiento farmacológico , Tirosina Quinasa 3 Similar a fms
16.
Nat Commun ; 14(1): 5032, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596280

RESUMEN

T-cell immunity is central for control of COVID-19, particularly in patients incapable of mounting antibody responses. CoVac-1 is a peptide-based T-cell activator composed of SARS-CoV-2 epitopes with documented favorable safety profile and efficacy in terms of SARS-CoV-2-specific T-cell response. We here report a Phase I/II open-label trial (NCT04954469) in 54 patients with congenital or acquired B-cell deficiency receiving one subcutaneous CoVac-1 dose. Immunogenicity in terms of CoVac-1-induced T-cell responses and safety are the primary and secondary endpoints, respectively. No serious or grade 4 CoVac-1-related adverse events have been observed. Expected local granuloma formation has been observed in 94% of study subjects, whereas systemic reactogenicity has been mild or absent. SARS-CoV-2-specific T-cell responses have been induced in 86% of patients and are directed to multiple CoVac-1 peptides, not affected by any current Omicron variants and mediated by multifunctional T-helper 1 CD4+ T cells. CoVac-1-induced T-cell responses have exceeded those directed to the spike protein after mRNA-based vaccination of B-cell deficient patients and immunocompetent COVID-19 convalescents with and without seroconversion. Overall, our data show that CoVac-1 induces broad and potent T-cell responses in patients with B-cell/antibody deficiency with a favorable safety profile, which warrants advancement to pivotal Phase III safety and efficacy evaluation. ClinicalTrials.gov identifier NCT04954469.


Asunto(s)
Agammaglobulinemia , COVID-19 , Humanos , SARS-CoV-2 , Linfocitos T , Péptidos/uso terapéutico
17.
Front Immunol ; 14: 1163136, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122707

RESUMEN

T cell-based immunotherapy has significantly improved treatment options for many malignancies. However, despite these and other therapeutic improvements over the last decades, gastrointestinal cancers, in particular pancreatic, hepatic and gastric cancer, are still characterized by high relapse rates and dismal prognosis, with an accordingly high unmet medical need for novel treatment strategies. We here report on the preclinical characterization of a novel bispecific antibody in an IgG-based format termed CC-3 with B7-H3xCD3 specificity. In many cancer entities including pancreatic, hepatic and gastric cancers, B7-H3 (CD276) is overexpressed on tumor cells and also on the tumor vasculature, the latter allowing for improved access of immune effector cells into the tumor site upon therapeutic targeting. We demonstrate that CC-3 induces profound T cell reactivity against various pancreatic, hepatic and gastric cancer cell lines as revealed by analysis of activation, degranulation and secretion of IL2, IFNγ as well as perforin, resulting in potent target cell lysis. Moreover, CC-3 induced efficient T cell proliferation and formation of T cell memory subsets. Together, our results emphasize the potential of CC-3, which is presently being GMP-produced to enable clinical evaluation for treatment of pancreatic, hepatic and gastric cancer.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/terapia , Inmunoglobulina G , Recurrencia Local de Neoplasia , Linfocitos T , Inmunoterapia/métodos , Antígenos B7/metabolismo
18.
Leukemia ; 37(5): 1018-1027, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37024521

RESUMEN

Despite routine use of DNA-hypomethylating agents (HMAs) in AML/MDS therapy, their mechanisms of action are not yet unraveled. Pleiotropic effects of HMAs include global methylome and transcriptome changes. We asked whether in blasts and T-cells from AML patients HMA-induced in vivo demethylation and remethylation occur randomly or non-randomly, and whether gene demethylation is associated with gene induction. Peripheral blood AML blasts from patients receiving decitabine (20 mg/m2 day 1-5) were serially isolated for methylome analyses (days 0, 8 and 15, n = 28) and methylome-plus-transcriptome analyses (days 0 and 8, n = 23), respectively. T-cells were isolated for methylome analyses (days 0 and 8; n = 16). We noted massive, non-random demethylation at day 8, which was variable between patients. In contrast, T-cells disclosed a thousand-fold lesser, random demethylation, indicating selectivity of the demethylation for the malignant blasts. The integrative analysis of DNA demethylation and transcript induction revealed 87 genes displaying a significant inverse correlation, e.g. the tumor suppressor gene IFI27, whose derepression was validated in two AML cell lines. These results support HMA-induced, non-random early in vivo demethylation events in AML blasts associated with gene induction. Larger patient cohorts are needed to determine whether a demethylation signature may be predictive for response to this treatment.


Asunto(s)
Epigenoma , Leucemia Mieloide Aguda , Humanos , Decitabina/farmacología , Transcriptoma , Metilación de ADN , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , ADN/metabolismo
19.
Front Immunol ; 14: 1112505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969164

RESUMEN

Despite the successful development of vaccines and neutralizing antibodies to limit the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerging variants prolong the pandemic and emphasize the persistent need to develop effective antiviral treatment regimens. Recombinant antibodies directed to the original SARS-CoV-2 have been successfully used to treat established viral disease. However, emerging viral variants escape the recognition by those antibodies. Here we report the engineering of an optimized ACE2 fusion protein, designated ACE2-M, which comprises a human IgG1 Fc domain with abrogated Fc-receptor binding linked to a catalytically-inactive ACE2 extracellular domain that displays increased apparent affinity to the B.1 spike protein. The affinity and neutralization capacity of ACE2-M is unaffected or even enhanced by mutations present in the spike protein of viral variants. In contrast, a recombinant neutralizing reference antibody, as well as antibodies present in the sera of vaccinated individuals, lose activity against such variants. With its potential to resist viral immune escape ACE2-M appears to be particularly valuable in the context of pandemic preparedness towards newly emerging coronaviruses.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2/genética , Anticuerpos Neutralizantes , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión
20.
Mol Ther ; 31(4): 1033-1045, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36793213

RESUMEN

T cell-based immunotherapy has revolutionized oncological treatment. However, many patients do not respond to treatment, and long-term remissions remain rare, particularly in gastrointestinal cancers like colorectal cancer (CRC). B7-H3 is overexpressed in multiple cancer entities including CRC on both tumor cells and tumor vasculature, the latter facilitating influx of effector cells into the tumor site upon therapeutic targeting. We generated a panel of T cell-recruiting B7-H3xCD3 bispecific antibodies (bsAbs) and show that targeting a membrane-proximal B7-H3 epitope allows for a 100-fold reduction of CD3 affinity. In vitro, our lead compound CC-3 showed superior tumor cell killing, T cell activation, proliferation, and memory formation, whereas undesired cytokine release was reduced. In vivo, CC-3 mediated potent antitumor activity in three independent models using immunocompromised mice adoptively transferred with human effector cells with regard to prevention of lung metastasis and flank tumor growth as well as elimination of large established tumors. Thus, fine-tuning of both target and CD3 affinities as well as binding epitopes allowed for the generation of a B7-H3xCD3 bsAbs with promising therapeutic activity. CC-3 is presently undergoing good manufacturing practice (GMP) production to enable evaluation in a clinical "first-in-human" study in CRC.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias Gastrointestinales , Humanos , Ratones , Animales , Inmunoglobulina G , Linfocitos T , Neoplasias Gastrointestinales/terapia , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Inmunoterapia , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA