Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; : 134374, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39098671

RESUMEN

The consumption of animal products has witnessed a significant increase over the years, leading to a growing need for industries to adopt strict waste control measures to mitigate environmental impacts. The disposal of animal waste in landfill can result in diverse and potentially hazardous decomposition by-products. Animal by-products, derived from meat, poultry, seafood and fish industries, offer a substantial raw material source for collagen and gelatin production due to their high protein content. Collagen, being a major protein component of animal tissues, represents an abundant resource that finds application in various chemical and material industries. The demand for collagen-based products continues to grow, yet the availability of primary material remains limited and insufficient to meet projected needs. Consequently, repurposing waste materials that contain collagen provides an opportunity to meet this need while at the same time minimizing the amount of waste that is dumped. This review examines the potential to extract value from the collagen content present in animal-derived waste and by-products. It provides a systematic evaluation of different species groups and discusses various approaches for processing and fabricating repurposed collagen. This review specifically focuses on collagen-based research, encompassing an examination of its physical and chemical properties, as well as the potential for chemical modifications. We have detailed how the research and knowledge built on collagen structure and function will drive the new initiatives that will lead to the development of new products and opportunities in the future. Additionally, it highlights emerging approaches for extracting high-quality protein from waste and discusses efforts to fabricate collagen-based materials leading to the development of new and original products within the chemical, biomedical and physical science-based industries.

2.
Macromol Rapid Commun ; : e2400370, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38873978

RESUMEN

Liquid crystalline elastomers (LCEs) are a class of shape-changing polymers with exceptional mechanical properties and potential as artificial muscles/polymer actuators. In this study, multifunctional LCE actuators with strain sensing and joule heating responsivity are developed. LCEs are successfully synthesized using the thiol-ene two-staged michael addition polymerization (TMAP) method. The LCE films are further functionalized via sequential polydopamine (PDA) and silver electroless coating. It is found that the PDA coating enabled the anchoring of the Ag particles to the LCE, thereby enabling the electrical conductivity of the Ag-LCEs (<0.1 Ω cm-1). The studies confirm that the Ag/PDA coated LCEs can sense up to ≈30% strain, sense their own actuation strokes, and actuate at a rate of 1.83% s-1 while lifting a weight ≈50 times its mass in response to a 12 V 2A DC current.

3.
Molecules ; 27(22)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36432134

RESUMEN

Recently, considerable interest has been focused on developing greener and biodegradable materials due to growing environmental concerns. Owing to their low cost, biodegradability, and good mechanical properties, plant fibers have substituted synthetic fibers in the preparation of composites. However, the poor interfacial adhesion due to the hydrophilic nature and high-water absorption limits the use of plant fibers as a reinforcing agent in polymer matrices. The hydrophilic nature of the plant fibers can be overcome by chemical treatments. Cellulose the most abundant natural polymer obtained from sources such as plants, wood, and bacteria has gained wider attention these days. Different methods, such as mechanical, chemical, and chemical treatments in combination with mechanical treatments, have been adopted by researchers for the extraction of cellulose from plants, bacteria, algae, etc. Cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and microcrystalline cellulose (MCC) have been extracted and used for different applications such as food packaging, water purification, drug delivery, and in composites. In this review, updated information on the methods of isolation of nanocellulose, classification, characterization, and application of nanocellulose has been highlighted. The characteristics and the current status of cellulose-based fiber-reinforced polymer composites in the industry have also been discussed in detail.


Asunto(s)
Celulosa , Nanopartículas , Celulosa/química , Tecnología , Nanopartículas/química , Embalaje de Alimentos , Fenómenos Químicos
4.
Nanoscale ; 14(18): 6854-6865, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35441643

RESUMEN

The fabrication of ultralight strong carbon nanofiber aerogels with excellent elasticity is still a challenge. Herein, 3D mesoporous graphene/carbon nanofibers (G/CNF) were prepared for the first time from polyacrylonitrile/poly(4-vinyl phenol) (PAN/PVPh) electrospun fibers. Through hydrogen bonding interactions between PAN and PVPh polymer chains, traditional soft carbon nanofibers can be converted to form hard nanofiber aerogels with excellent mechanical, electrical, and sorption properties. The specific interactions among PAN/PVPh led to the formation of porous features on carbonized nanofiber foams. The 3D carbon foams are extremely elastic, strong, and light in weight, and they exhibited super oleophilic and fire-resistance properties. Electrochemical studies indicate that the G/CNF foam achieves a capacitance of up to 267 F g-1 (at a scan rate of 1 mV s-1), with an energy density of 37.04 W h kg-1, exhibiting better electrochemical performance than other reported porous carbon devices. In addition, the G/CNF foam also exhibits sorption capacity towards various organic solvents and oils. This study paves the way toward a new class of lightweight and robust porous carbon nanocomposites for application in electrochemical energy storage systems and oil sorption devices.

5.
Phys Chem Chem Phys ; 15(28): 11696-703, 2013 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-23752343

RESUMEN

The effective dispersion of carbon nanotubes (CNTs) in a thermoset was achieved using ionic liquid as the dispersion-curing agent. We preferentially dispersed multiwalled carbon nanotubes (MWCNTs) down to individual tube levels in epoxy resin. Here the dispersion is ruled by the depletion of physical bundles within the MWCNT networks, for which molecular ordering of ionic liquids is considered responsible. The quantitative analyses using ultra small angle X-ray scattering (USAXS) confirmed the dispersion of individual MWCNTs in the matrix. The distance between the dispersed nanotubes was calculated at different nanotube loadings using the power law fitting of the USAXS data. The fine dispersion and subsequent curing, both controlled by ionic liquid, lead to composites with substantially enhanced fracture mechanical and thermomechanical properties with no reduction in thermal properties. Merging processing techniques of nanocomposites with ionic liquid for efficient dispersion of nanotubes and preferential curing of thermosets facilitates the development of new, high performance materials.

6.
Langmuir ; 29(29): 9240-8, 2013 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-23789650

RESUMEN

Here we report a viable route to fibrillar micelles and entrapped vesicles in aqueous solutions. Nanofibrillar micelles and entrapped vesicles were prepared from complexes of a biodegradable block copolymer poly(ethylene oxide)-block-poly(lactide) (PEO-b-PLA) and a polyelectrolyte poly(acrylic acid) (PAA) in aqueous media and directly visualized using cryogenic transmission electron microscopy (cryo-TEM). The self-assembly and the morphological changes in the complexes were induced by the addition of PAA/water solution into the PEO-b-PLA in tetrahydrofuran followed by dialysis against water. A variety of morphologies including spherical wormlike and fibrillar micelles, and both unilamellar and entrapped vesicles, were observed, depending on the composition, complementary binding sites of PAA and PEO, and the change in the interfacial energy. Increasing the water content in each [AA]/[EO] ratio led to a morphological transition from spheres to vesicles, displaying both the composition- and dilution-dependent micellar-to-vesicular morphological transitions.


Asunto(s)
Resinas Acrílicas/química , Materiales Biocompatibles/química , Compuestos Epoxi/química , Micelas , Nanoestructuras/química , Poliésteres/química , Agua/química , Soluciones
7.
Macromol Rapid Commun ; 33(5): 401-6, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22282132

RESUMEN

This work reports for the first time a simple and effective approach to trigger a spheres-to- vesicles morphological transition from amphiphilic block copolymer/polyelectrolyte complexes in aqueous solution. Vesicles and large compound vesicles (LCVs) were prepared via complexation of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) with poly(acrylic acid) (PAA) in water and directly visualized using cryo-TEM. The complexation and morphological transitions were driven by the hydrogen bonding between the complementary binding sites on the PAA and PEO blocks of the block copolymer. The findings in this work suggest that complexation between amphiphilic block copolymer and polyelectrolyte is a viable approach to vesicles and LCVs in aqueous media.


Asunto(s)
Técnicas de Química Sintética/métodos , Electrólitos/química , Polímeros/síntesis química , Agua/química , Resinas Acrílicas/química , Polietilenglicoles/química , Polimerizacion , Polímeros/química , Poliestirenos/química
8.
J Phys Chem B ; 115(31): 9528-36, 2011 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-21751806

RESUMEN

We report for the first time multiple vesicular morphologies in block copolymer complexes formed in aqueous media via hydrogen bonding interactions. A model AB/AC diblock copolymer system consisting of polystyrene-block-poly(acrylic acid) (PS-b-PAA) and polystyrene-block-poly(ethylene oxide) (PS-b-PEO) was examined using transmission electron microscopy, small-angle X-ray scattering, and dynamic light scattering. The complexation and morphological transitions were driven by the hydrogen bonding between the complementary binding sites on PAA and PEO blocks of the two diblock copolymers. Upon the addition of PS-b-PEO, a variety of bilayer aggregates were formed in PS-b-PAA/PS-b-PEO complexes including vesicles, multilamellar vesicles (MLVs), thick-walled vesicles (TWVs), interconnected compound vesicles (ICCVs), and irregular aggregates. Among these aggregates, ICCVs were observed as a new morphology. The morphology of aggregates was correlated with respect to the molar ratio of PEO to PAA. At [EO]/[AA] = 0.5, vesicles were observed, while MLVs were obtained at [EO]/[AA] = 1. TWVs and ICCVs were formed at [EO]/[AA] = 2 and 6, respectively. When [EO]/[AA] reached 8 and above, only irregular aggregates appeared. These findings suggest that complexation between two amphiphilic diblock copolymers is a viable approach to prepare polymer vesicles in aqueous media.

9.
J Chem Phys ; 131(21): 214905, 2009 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-19968367

RESUMEN

We present a study of microphase separation induced by competitive hydrogen bonding in A-b-B/C diblock copolymer/homopolymer complexes where the diblock copolymer A-b-B is immiscible and the homopolymer C can interact unequally with both A and B blocks through hydrogen bonding. A model system containing poly(2-vinyl pyridine)-block-poly(methyl methacrylate) (P2VP-b-PMMA) and poly(4-vinyl phenol) (PVPh) in tetrahydrofuran was investigated. In these self-assembled complexes, microphase separation takes place due to the disparity in intermolecular interactions. Specifically, PVPh and P2VP blocks interact strongly to form complex, whereas PVPh and PMMA blocks interact weakly. The hydrogen bonding interactions were revealed by infrared spectroscopy and analyzed in terms of the difference in interassociation constants (K), i.e., interaction parameters of each blocks of the block copolymer to the homopolymer and according to the random phase approximation. The phase behavior of the complexes was investigated with small-angle x-ray scattering and transmission electron microscopy. A series of morphologies including lamellae, hexagonal cylinders, wormlike microdomains, and hierarchical structures was documented as a function of the copolymer concentration. Moreover, we outlined how hydrogen bonding determines the self-assembly and causes morphological transitions in different A-b-B/C diblock copolymer/homopolymer systems with respect to the K values.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA