Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Intervalo de año de publicación
1.
Mol Ther Oncol ; 32(2): 200800, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38706989

RESUMEN

Breast cancer remains a significant global health concern, emphasizing the critical need for effective treatment strategies, especially targeted therapies. This systematic review summarizes the findings from in vitro and in vivo studies regarding the therapeutic potential of exosomes as drug delivery platforms in the field of breast cancer treatment. A comprehensive search was conducted across bibliographic datasets, including Web of Science, PubMed, and Scopus, using relevant queries from several related published articles and the Medical Subject Headings Database. Then, all morphological, biomechanical, histopathological, and cellular-molecular outcomes were systematically collected. A total of 30 studies were identified based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. These studies underwent assessment using the Systematic Review Centre for Laboratory Animal Experimentation risk of bias assessment tool. The results indicate that exosomes exhibit promise as effective drug delivery platforms, capable of hindering cancer cell viability, proliferation, migration, and angiogenesis. However, a comprehensive assessment is challenging due to some studies deviating from guidelines and having incomplete methodology. Addressing these, future studies should detail methodologies, optimize dosing, and enhance exosome production. Standardization in reporting, consistent protocols, and exploration of alternative sources are crucial.

2.
Iran Biomed J ; 28(2&3): 132-9, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38468372

RESUMEN

Background: ExoRNAs offer valuable insights into their cellular origin. ExoRNA studies were faced with challenges in obtaining sufficient amounts of high-quality RNA. Herein, we aimed to compare three traditional exosome isolation methods to introduce an appropriate strategy to extract RNA from cancer-derived exosomes for further RNA analysis. Methods: Exosomes were isolated through ultracentrifugation, precipitation kit, and size exclusion column chromatography, and then characterized by DLS and TEM, followed by extracting total RNA. The quality and quantity of the extracted RNAs were assessed by a NanoDrop and 2.5% agarose gel electrophoresis. Results: Extracted exosomes displayed a similar range of size and morphology. We found that PEG-precipitation method resulted in a higher RNA yield with a 260/280 ratio of 1.9. The obtained exoRNA appeared as a smear in the agarose gel, indicative of small exoRNAs. Conclusion: We provide researchers a suitable approach to isolate exosomes based on yield and purity of exoRNA.


Asunto(s)
Exosomas , Polietilenglicoles , ARN , Exosomas/metabolismo , Exosomas/química , Humanos , Polietilenglicoles/química , ARN/aislamiento & purificación , Ultracentrifugación/métodos , Línea Celular Tumoral
3.
Acta Trop ; 254: 107190, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508372

RESUMEN

Pentavalent antimonials are the mainstay treatment against different clinical forms of leishmaniasis. The emergence of resistant isolates in endemic areas has led to treatment failure. Unraveling the underlying resistance mechanism would assist in improving the treatment strategies against resistant isolates. This study aimed to investigate the RNA expression level of glutathione synthetase (GS), Spermidine synthetase (SpS), trypanothione synthetase (TryS) genes involved in trypanothione synthesis, and thiol-dependent reductase (TDR) implicated in drug reduction, in antimony-sensitive and -resistant Leishmania tropica isolates. We investigated 11 antimony-resistant and 11 antimony-sensitive L. tropica clinical isolates from ACL patients. Drug sensitivity of amastigotes was determined in mouse macrophage cell line J774A.1. The RNA expression level in the promastigote forms was analyzed by quantitative real-time PCR. The results revealed a significant increase in the average expression of GS, SpS, and TrpS genes by 2.19, 1.56, and 2.33-fold in resistant isolates compared to sensitive ones. The average expression of TDR was 1.24-fold higher in resistant isolates, which was insignificant. The highest correlation coefficient between inhibitory concentration (IC50) values and gene expression belonged to the TryS, GS, SpS, and TDR genes. Moreover, the intracellular thiol content was increased 2.17-fold in resistant isolates compared to sensitive ones and positively correlated with IC50 values. Our findings suggest that overexpression of trypanothione biosynthesis genes and increased thiol content might play a key role in the antimony resistance of L. tropica clinical isolates. In addition, the diversity of gene expression in the trypanothione system and thiol content among L. tropica clinical isolates highlighted the phenotypic heterogeneity of antimony resistance among the parasite population.


Asunto(s)
Antimonio , Antiprotozoarios , Resistencia a Medicamentos , Glutatión , Glutatión/análogos & derivados , Leishmania tropica , Espermidina/análogos & derivados , Leishmania tropica/genética , Leishmania tropica/efectos de los fármacos , Resistencia a Medicamentos/genética , Animales , Antimonio/farmacología , Humanos , Antiprotozoarios/farmacología , Ratones , Glutatión/metabolismo , Línea Celular , Macrófagos/parasitología , Concentración 50 Inhibidora , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/tratamiento farmacológico , Femenino , Adulto , Pruebas de Sensibilidad Parasitaria , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Artículo en Inglés | MEDLINE | ID: mdl-38240779

RESUMEN

Triple-negative breast cancer is a subtype of breast cancer with poor clinical outcome, and currently, no effective targeted therapies are available. Since cancer develops owing to deregulation of apoptosis, employing therapeutic strategies with the ability to target the molecules involved in apoptosis induction would provide a valid approach to hinder tumor progression. Hydrazide-hydrazones and oxamide molecules are the subject of intense studies due to their anticancer effects via apoptosis induction. In the present study, we attempted to elucidate the mechanism of action of a synthesized compound (compound A) in inducing cell death. Annexin/PI and Western blotting analyses, DAPI staining, mitochondrial membrane potential probe, and flow cytometry were applied for the in vitro evaluations. 4T1 syngeneic mouse model and immunohistochemistry were used for the in vivo assessments. Compound A caused cell death by inducing apoptosis in MDA-MB-231 cells in a mitochondrial-dependent manner at high concentrations after 72 h of incubation. Compound A also impeded tumor growth in a 4T1 syngeneic mouse model as evidenced by hematoxylin and eosin staining of the tumors. Furthermore, it significantly diminished the expression of pro-caspase-3, Ki67, and CD31 markers in the tumor sections. Conclusively, this study for the first time reports the anti-cancer efficacy of compound A in both in vitro and in vivo models and its potential in the treatment of triple-negative breast cancer.

5.
Res Pharm Sci ; 18(1): 24-38, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36846733

RESUMEN

Background and purpose: Considering various studies implying anticancer activity of the hydrazone and oxamide derivatives through different mechanisms such as kinases and calpain inhibition, herein, we report the synthesis, characterization, and evaluation of the antiproliferative effect of a series of hydrazones bearing oxamide moiety compounds (7a-7n) against a panel of cancer cell lines to explore a novel and promising anticancer agent (7k). Experimental approach: Chemical structures of the synthesized compounds were confirmed by FTIR, 1H-NMR, 13C-NMR, and mass spectra. The antiproliferative activity and cell cycle progression of the target compound were investigated using the MTT assay and flow cytometry. Findings/Results: Compound 7k with 2-hydroxybenzylidene structure was found to have a significant in vitro anti-proliferative influence on MDA-MB-231 (human adenocarcinoma breast cancer) and 4T1 (mouse mammary tumor) cells as the model of triple-negative breast cancer, with the IC50-72h values of 7.73 ± 1.05 and 1.82 ± 1.14 µM, respectively. Following 72-h incubation with compound 7k, it caused MDA-MB-231 cell death through G1/S cell cycle arrest at high concentrations (12 and 16 µM). Conclusion and implications: Conclusively, this study for the first time reports the anti-proliferative efficacy of compound 7k possessing 2-hydroxyphenyl moiety, which may serve as a potent candidate in triple-negative breast cancer treatment.

6.
Iran J Pharm Res ; 22(1): e140450, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38444711

RESUMEN

Background: Neuroinflammation and oxidative stress are critical factors involved in the pathogenesis of Parkinson's disease (PD), the second most common progressive neurodegenerative disease. Additionally, lipid peroxidation end products contribute to inflammatory responses by activating pro-inflammatory genes. Lipid peroxidation occurs as a result of either the overproduction of intracellular reactive oxygen species (ROS) or the reaction of cyclooxygenases (COXs). Objectives: In this study, we examined the role of 1,5-diaryl pyrrole derivatives against the neurotoxic effects of 6-hydroxydopamine (6-OHDA) in a cellular model of PD. Methods: PC12 cells were pre-treated with compounds 2-(4-chlorophenyl)-5-methyl-1-(4-(trifluoromethoxy)phenyl)-1H-pyrrole (A), 2-(4-chlorophenyl)-1-(4-methoxyphenyl)-5-methyl-1H-pyrrole (B), and 1-(2-chlorophenyl)-2-(4-chlorophenyl)-5-methyl-1H-pyrrole (C), respectively, 24 h before exposure to 6-OHDA. We conducted various assays, including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT), ROS, and lipid peroxidation assays, Hoechst staining, Annexin V/PI, Western blotting analysis and ELISA method, to assess the neuroprotective effects of pyrrole derivatives on 6-OHDA-induced neurotoxicity. Results: Our results demonstrated that apoptosis induction was inhibited by controlling the lipid peroxidation process in the in vitro model following pre-treatment with compounds A, B, and, somehow, C. Furthermore, compounds A and C likely act by suppressing the COX-2/PGE2 pathway, a mechanism not attributed to compound B. Conclusions: These findings suggest that the novel synthetic pyrrolic derivatives may be considered promising neuroprotective agents that can potentially prevent the progression of PD.

7.
Basic Clin Neurosci ; 13(3): 295-304, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36457884

RESUMEN

Introduction: We have reported that thymol and carvacrol can improve cognitive abilities in Alzheimer Disease (AD) rat models. However, the mechanism of their action is not yet fully understood. Recently, our in vitro results suggested that PC12 cell death induced by Aß25-35 can be protected by thymol and carvacrol via Protein Kinase C (PKC) and Reactive Oxygen Species (ROS) pathways. So, we hypothesize that the mechanisms of thymol and carvacrol in improving the learning impairment in the AD rat model may be related to their effects on PKC. So, the activity of PKC and protein expression levels of PKCα were examined in the hippocampal cells of the AD rat model. Methods: To examine the thymol and carvacrol effects, we performed a behavioral test in AD rat models induced by Aß25-35 neurotoxicity. To access the underlying mechanism of the protective effects, western blotting was performed with antibodies against PKCα. We also measured the PKC activity assay by Elisa. Histopathological studies were carried out in the hippocampus with Hematoxylin and Eosin (H&E) staining. Results: The escape latency increased in Aß-received rats compared to the control group, and thymol and carvacrol reversed this deficit. Furthermore, these compounds could enhance the PKC activity and increase the PKCα expression ratio. Moreover, H&E staining showed that Aß caused shrinkage of the CA1 pyramidal neurons. However, thymol and carvacrol treatments could prevent this effect of Aß peptides. Conclusion: This study suggests that Amyloid-Beta (Aß) results in memory decline and histochemical disturbances in the hippocampus. Moreover, these results revealed that thymol and carvacrol could have protective effects on cognition in AD-like models via PKC activation. Highlights: Rat's ability to find the invisible platform in the Morris Water Maze (MWM) was impaired by Amyloid-Beta (Aß) infusion in the hippocampus, while this effect was reversed by thymol or carvacrol administration.Aß significantly downregulated the Protein Kinase C (PKC) activity in rats' hippocampus.Western blot analysis demonstrated that Aß significantly reduced PKCα protein expression in AD rat model hippocampal cells.The expression ratio of PKCα was upregulated following the injection of thymol and carvacrol in rats.Injection of Aß in the hippocampus resulted in histochemical disturbances in CA1 pyramidal neurons.Carvacrol and thymol can prevent several histological changes induced by Aß. Plain Language Summary: Alzheimer's disease is one of the most important brain diseases in which the learning and memory are impaired. One of the main causes of Alzheimer's disease is the presence of amyloid beta plaques in the neurons. Protein kinase C enzyme reduces amyloid production and accumulation in the brain. In the present study, we tested the possible effects of carvacrol and thymol in a rat model of Alzheimer's disease. Memory impairment was induced in adult rats by intra-cerebral infusion of amyloid ß. One week later, the memory-impaired animals were treated with carvacrol and thymol. Finally, we tested their memory in a Morris water maze apparatus. Furthermore, their hippocampus was dissected and PKC activity and the neuronal injury was evaluated. Our findings exhibited that thymol and carvacrol improved rats' memory performance. In addition, thymol and carvacrol significantly increased PKC activity and prevented neuronal cell loss in the rat hippocampus. This study shows that thymol and carvacrol have beneficial effects on memory and cognitive function via PKC activation.

8.
BMC Chem ; 16(1): 81, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36320042

RESUMEN

BACKGROUND: Compounds possessing urea/thiourea moiety have a wide range of biological properties including anticancer activity. On the other hand, taking advantage of the low toxicity and structural diversity of hydrazone derivatives, they are presently being considered for designing chemical compounds with hydrazone moiety in the field of cancer treatment. With this in mind, a series of novel ureido/thioureido derivatives possessing a hydrazone moiety bearing nitro and chloro substituents (4a-4i) have been designed, synthesized, characterized and evaluated for their in vitro cytotoxic effect on HT-29 human colon carcinoma and HepG2 hepatocarcinoma cell lines. RESULTS: Two compounds (4c and 4e) having the chloro phenylurea group hybridized with phenyl hydrazone bearing nitro or chloro moieties demonstrated potent anticancer effect with the IC50 values between 2.2 and 4.8 µM at 72 h. The mechanism of action of compound 4c was revealed in hepatocellular carcinoma cells as an inducer of apoptosis in a caspase-independent pathway. CONCLUSION: Taken together, the current work presented compound 4c as a potential lead compound in developing future hepatocellular carcinoma chemotherapy drugs. METHODS: The compounds were synthesized and then characterized by physical and spectral data (FT-IR, 1H-NMR, 13C-NMR, Mass). The anticancer activity was assessed using MTT assay, flowcytometry, annexin-V, DAPI staining and Western blot analysis.

9.
Life Sci ; 304: 120701, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35690107

RESUMEN

AIMS: Doxorubicin is a potent and broad-spectrum antineoplastic medication prescribed for both solid and hematological malignancies. Despite its value, the clinical use of doxorubicin is limited due to cardio-oncologic complication and cardiotoxic adverse effect. Among the mechanisms proposed for its toxicity, mitochondrial dysfunction has gained more attention. Therefore, if damaged mitochondria are replaced by normal efficient mitochondria, cardiac toxicity is expected to be reduced or improved. In this way, we have studied the efficiency of transplantation of freshly isolated rat liver mitochondria in neonatal rat cardiomyocytes that have been damaged by doxorubicin. MATERIALS AND METHODS: For this purpose, isolated mitochondria were characterized using mitochondrial complex II, membrane potential and swelling evaluations, and also fluorescence and electron microscopy. Afterward, the effect of mitotherapy on the damaged cardiomyocytes was investigated by using annexin V/PI staining, MTT, ROS, MMP, lipid peroxidation, GSH and ATP evaluations. KEY FINDINGS AND SIGNIFICANCE: Transplanted mitochondria could remarkably enter the neonatal rat cardiomyocytes. Addition of mitochondria to the damaged cardiomyocytes, significantly increased cell viability by reducing the level of reactive oxygen species and lipid peroxidation, increasing of ∆Ψ, ATP and GSH contents and decreasing of apoptotic and necrotic cell death. Our results showed that mitotherapy has a significant restorative effect on cardiotoxicity induced by doxorubicin, which promises a better future to reduce the complications of cancer treatment.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Adenosina Trifosfato/metabolismo , Animales , Cardiotoxicidad/etiología , Cardiotoxicidad/metabolismo , Cardiotoxicidad/prevención & control , Doxorrubicina/farmacología , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Ratas , Especies Reactivas de Oxígeno/metabolismo
10.
J Mol Model ; 28(5): 113, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35381900

RESUMEN

There is a growing interest in designing a nanocarrier containing an EGFR targeting affibody to direct toward cancer cells. Here, cytolysin A was cloned at the N-terminus of ZEGFR:1907 affibody to guarantee its surface presentation on the OMVs while targeting the epidermal growth factor receptors (EGFRs). A separate construct including a fusogenic peptide (GALA) was also designed for the endosomal escape of the nanocarrier. Binding of the two constructs ClyA-affiEGFR and ClyA-affiEGFR-GALA to domain III of EGFR was investigated using molecular docking and molecular dynamic simulations. The higher stability of the ClyA-affiEGFR-GALA/EGFR as compared to the ClyA-affiEGFR/EGFR complex was evident. The ClyA-affiEGFR-GALA structure showed a higher RMSD during the first half of the simulation time implying a much less stable behavior. Plateau state of the radius of gyration plot of ClyA-affiEGFR-GALA confirmed a well-folded structure in the presence of the GALA sequence. Solvent accessible surface area for both proteins was in the same range. The data obtained from hydrogen bond analysis revealed a more equilibrated and stable form of the ClyA-affiEGFR-GALA structure upon interaction with EGFR. The data provided here was a requisite for our biological evaluation of the synthesized constructs as a component of a novel drug delivery system.


Asunto(s)
Receptores ErbB , Péptidos , Receptores ErbB/metabolismo , Simulación del Acoplamiento Molecular , Péptidos/química
11.
Neurochem Res ; 47(5): 1226-1242, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35112235

RESUMEN

In this research, the involvement of CB1 and TRPV1 receptors in the possible protective effects of anandamide were investigated in the kindling model of epilepsy. The basolateral amygdala of the rat brain was chosen to put stimulating electrodes. Semi-rapid kindling was induced by a repetitive sub-threshold stimulation for 5-9 consecutive days. There were seven groups, six of which were kindled and used for drug testing by intracerebroventricular (i.c.v.) microinjection. (i) Sham, (ii) control group received vehicles, (iii) anandamide (AEA; 100 ng/rat), (iv) capsazepine (TRPV1 antagonist; 100 ng/rat), (v) AM251 (CB1 antagonist; 100 ng/rat), (vi) AM251 + anandamide, and (vii) capsazepine + anandamide. The after-discharge duration, seizure duration, and stage five duration were measured in rats. Moreover, the expressions of the extracellular signal-regulated kinase (ERK) and the cAMP responsive element binding (CREB) proteins in the hippocampus were also studied. The anandamide-treated group showed a significant decrease in seizure scores, while no change was shown in seizure scores in the capsazepine- and AM251-treated groups compared with the control group. Co-administrations of either capsazepine + AEA or AM251 + AEA attenuated the protective effect of AEA against seizure. Furthermore, the group received AEA showed a decrease in the expressions of CREB and p-CREB possibly through the activation of the CB1 and TRPV1 receptors. Activation of CB1 and TRPV1 receptors might be involved in AEA anticonvulsant effect in kindling model of epilepsy. This effect could be due to suppression of CREB phosphorylation in hippocampal neurons.


Asunto(s)
Ácidos Araquidónicos , Epilepsia , Animales , Ácidos Araquidónicos/farmacología , Ácidos Araquidónicos/uso terapéutico , Endocannabinoides/farmacología , Endocannabinoides/uso terapéutico , Epilepsia/tratamiento farmacológico , Alcamidas Poliinsaturadas/farmacología , Alcamidas Poliinsaturadas/uso terapéutico , Ratas , Receptor Cannabinoide CB1/metabolismo , Canales Catiónicos TRPV/metabolismo
12.
J Biomol Struct Dyn ; 40(10): 4440-4450, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33351722

RESUMEN

Low-density lipoprotein receptor-related protein 6 (LRP6) is an important therapeutic target for diseases such as osteoporosis, Alzheimer, cancer, and neurodegenerative disease. Computational methods such as ligand-based and structure-based virtual screening have been introduced as an extremely efficient and accurate tool for finding new drug targets and candidates. In this study, we aimed to screen the National Cancer Institute (NCI) Diversity Set II and parts of the ZINC database by virtual screening to identify potential and safe compounds that can inhibit the LRP6 protein. By utilizing various screening methods such as rigid and flexible molecular docking and Lipinski's rule of five, we identified 10 potential compounds. Then, their validity was further tested by molecular dynamics simulation and MMPBSA binding free energy calculations. Eventually, it was concluded that ZINC03954520, ZINC01729523, ZINC03898665, ZINC13152226, ZINC26730911 and ZINC01069082 compounds can be potential drug compounds for inhibiting LRP6 protein. These compounds in complex with ß-propeller domains of LRP6 showed that they are capable of altering the backbone of these domains and interfere with their structural dynamics which may lead to the inhibition of the signal transmission. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Lipoproteínas LDL , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica
13.
Front Pharmacol ; 12: 719289, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867325

RESUMEN

Bacterial outer membrane vesicles (OMVs) have recently drawn a great deal of attention due to their therapeutic efficiency and ability to target specific cells. In the present study, we sought to probe engineered OMVs as novel and promising carriers to target breast cancer cells. Following the fusion of the affiEGFR-GALA structure to the C-terminal of ClyA as an anchor protein, the ClyA-affiEGFR-GALA construct was successfully expressed on the surface of ∆msbB/∆pagP E. coli W3110-derived OMVs. Morphological features of the engineered and wild-type OMVs were identical. The engineered OMVs induced no endotoxicity, cytotoxicity, or immunogenicity, indicating the safety of their application. These OMVs could specifically bind to EGF receptors of MDA-MB-468 cells expressing high levels of EGFR and not to those with low levels of EGFR (HEK293T cells). Interestingly, despite a lower binding affinity of the engineered OMVs relative to the positive control Cetuximab, it was strong enough to identify these cells. Moreover, confocal microscopy revealed no uptake of the modified OMVs by the EGFR-overexpressing cells in the presence of EGFR competitors. These results suggest that OMVs might internalize into the cells with EGF receptors, as no OMVs entered the cells with any EGFR expression or those pretreated with EGF or Cetuximab. Regarding the EGFR-binding affinity of the engineered OMVs and their cellular uptake, they are presented here as a potential carrier for cell-specific drug delivery to treat a wide variety of cancer cells. Interestingly, the engineered OMVs are capable of reaching the cytoplasm while escaping the endosome due to the incorporation of a fusogenic GALA peptide in the construct.

14.
Cell J ; 23(4): 406-413, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34455715

RESUMEN

OBJECTIVE: Breast cancer (BC) still remains an imperative clinical issue, despite advances in the diagnosis, prognosis and treatment modalities of this malignancy. Hence, progress has been made to identify non-invasive, high sensitive and specific biomarkers. Since immune system affects development of breast cancer, peripheral blood mononuclear cells (PBMCs) -a subpopulation of immune cells- can be considered as a promising tool in the field of BC biomarker research. In the current study, we initially attempted to use concept of the present shared biomarkers in solid tumors and systemic immune profile and then evaluate correlation of these biomarkers to clinical use in cancer research. MATERIALS AND METHODS: In this experimental study, available microarray gene expression datasets of BC as well as the related PBMCs were retrieved and downloaded from the Gene Expression Omnibus (GEO) database, followed by analysis using GEO2R along with affylmGUI, a R-based package, to obtain differentially expressed genes (DEGs). Signature genes from 20 types of cancer were also applied to validate DEGs. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was carried out to assess mRNA level of CCNB2 in PBMC of the BC patients and healthy subjects. RESULTS: DEGs analysis for the transcription profile of BC cells and PBMCs showed two shared targets, CCNB2 and PGK1. Validation with systems biology using reweighted 20 types of cancer signature genes revealed that CCNB2 is the only common target in BC and its related PBMCs, which was further validated by qRT-PCR implying a significant increase in the level of CCNB2 in the BC patients. CONCLUSION: Results of this study demonstrated that PBMCs are affected by BC cells and CCNB2 may be of value as a diagnostic biomarker for breast cancer. However, verification would require future detailed experimental plans.

15.
Mol Pharmacol ; 99(5): 308-318, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33632781

RESUMEN

Celecoxib, or Celebrex, a nonsteroidal anti-inflammatory drug, is one of the most common medicines for treating inflammatory diseases. Recently, it has been shown that celecoxib is associated with implications in complex diseases, such as Alzheimer disease and cancer as well as with cardiovascular risk assessment and toxicity, suggesting that celecoxib may affect multiple unknown targets. In this project, we detected targets of celecoxib within the nervous system using a label-free thermal proteome profiling method. First, proteins of the rat hippocampus were treated with multiple drug concentrations and temperatures. Next, we separated the soluble proteins from the denatured and sedimented total protein load by ultracentrifugation. Subsequently, the soluble proteins were analyzed by nano-liquid chromatography tandem mass spectrometry to determine the identity of the celecoxib-targeted proteins based on structural changes by thermal stability variation of targeted proteins toward higher solubility in the higher temperatures. In the analysis of the soluble protein extract at 67°C, 44 proteins were uniquely detected in drug-treated samples out of all 478 identified proteins at this temperature. Ras-associated binding protein 4a, 1 out of these 44 proteins, has previously been reported as one of the celecoxib off targets in the rat central nervous system. Furthermore, we provide more molecular details through biomedical enrichment analysis to explore the potential role of all detected proteins in the biologic systems. We show that the determined proteins play a role in the signaling pathways related to neurodegenerative disease-and cancer pathways. Finally, we fill out molecular supporting evidence for using celecoxib toward the drug-repurposing approach by exploring drug targets. SIGNIFICANCE STATEMENT: This study determined 44 off-target proteins of celecoxib, a nonsteroidal anti-inflammatory and one of the most common medicines for treating inflammatory diseases. It shows that these proteins play a role in the signaling pathways related to neurodegenerative disease and cancer pathways. Finally, the study provides molecular supporting evidence for using celecoxib toward the drug-repurposing approach by exploring drug targets.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Celecoxib/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Proteínas/metabolismo , Proteoma/metabolismo , Animales , Cromatografía Liquida/métodos , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Ratas , Solubilidad/efectos de los fármacos , Espectrometría de Masas en Tándem/métodos , Temperatura
16.
Iran Biomed J ; 25(1): 1-7, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33129234

RESUMEN

Herein, we review the current findings of how a variety of accessory cells could participate in shaping the tumor microenvironment and supporting the mechanisms by which cancer cells undertake the epithelial-mesenchymal transition (EMT). EMT, a complex of phenotypic changes, promotes cancer cell invasion and creates resistance to chemotherapies. Among the accessory cells present in the EMT, immune cells (both native and adaptive) can reciprocally influence the tumor cells features, promote EMT and negatively regulate the anticancer immune response. In this review, we look over the role of EMT in crosstalk between tumor cells and the immune system, with specific emphasis on breast tumors. Finally, we suggest that understanding the role of immune cells in cancer progression could create new opportunities for diagnostic and therapeutic interventions in cancer combination therapy.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Comunicación Celular , Transición Epitelial-Mesenquimal , Leucocitos , Células Mieloides , Microambiente Tumoral , Neoplasias de la Mama/patología , Progresión de la Enfermedad , Femenino , Humanos , Células Asesinas Naturales , Linfocitos Infiltrantes de Tumor , Macrófagos , Células Supresoras de Origen Mieloide , Neutrófilos
17.
Iran J Pharm Res ; 19(2): 145-152, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33224219

RESUMEN

Prognosis of metastatic breast cancer is very poor which urges the necessity to develop novel potential drug candidates. We assessed two compounds with tri-aryl structures (A and B) for their potency to reduce primary breast tumor growth and lung metastasis in 4T1 mice model. MTT assay, 4T1 mammary mouse model, and immunohistochemistry experiments were used in this study. In-vitro results exhibited an anti-proliferative effect for compounds A and B towards MDA-MB-231 cancer cells. Our in-vivo results displayed that administered compounds A and B could suppress the size of the primary tumor and the number of lung metastatic foci in 4T1 BALB/c mice model. Histopathological analysis revealed that treatment of both compounds resulted in necrosis. Our findings provide new evidence that compound B may be promising for slowing the growth of tumor along with metastatic foci via COX-2 independent pathway.

18.
BMC Cancer ; 20(1): 1126, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33218315

RESUMEN

An amendment to this paper has been published and can be accessed via the original article.

19.
BMC Pharmacol Toxicol ; 21(1): 79, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33213519

RESUMEN

BACKGROUND: Although two novel synthesized compounds with tri-aryl structures; 3-(4-chlorophenyl)-5-(4-fluorophenyl)-4-phenyl-4,5-dihydro-1,2,4-oxadiazole (A) and 3,5-bis-(4-chlorophenyl)-4-phenyl-4,5-dihydro-1,2,4-oxadiazole (B) have been previously demonstrated to possess remarkable anti-breast cancer activity, their cardiotoxicity remains a major concern due to their mechanism of action. To address this concern, we assessed the ability of these compounds to cause toxicity towards H9c2 cardiomyocytes as an in vitro model of cardiotoxicity. METHODS: Cytotoxic activity of both compounds was explored in vitro on H9c2 cells using MTT assay. Annexin V/PI method, intracellular ROS determination and mitochondrial membrane potential assay were applied to elucidate the mechanism of action of the cell death. RESULTS: MTT assay revealed a concentration- and time-dependent cardiotoxicity. Findings of apoptosis by double staining with annexin V and propidium iodide divulged no cell death including apoptosis and necrosis at the concentration that were effective to inhibit cancer cells proliferation (10 µM) at 24 and 48 h. Furthermore, flow cytometric measurement of membrane potential and ROS determination using DCFH-DA verified the safe concentration of the compounds against H9c2 cells with no cardiotoxic effect. However, the higher concentration of the compounds could induce cell death through ROS-mediated mitochondrial dysfunction. CONCLUSIONS: Altogether, the results represented two novel chemical molecules possessing anti-breast cancer activity with minimum cardiac side effect.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/toxicidad , Cardiotoxinas/química , Cardiotoxinas/toxicidad , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Ratas
20.
Bioorg Chem ; 104: 104276, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32992280

RESUMEN

Novel lead compounds as anticancer agents with the ability to circumvent emerging drug resistance have recently gained a great deal of interest. Thiazolidinones are among such compounds with well-established biological activity in the field of oncology. Here, we designed, synthesized and characterized a series of thiazolidinone structures (8a-8k). The results of anti-proliferative assay led to the discovery of compound 8j with a high potent cytotoxic effect using colon, liver and breast cancer cells. Furthermore, MDA-MB-231 and 4T1 cell lines were used to represent triple negative breast cancer (TNBC). Next, a number of in vitro and in vivo evaluations were carried out to demonstrate the potential activity against TNBC and also elucidate the possible mechanism of cell death induction. Our in vitro outcomes exhibited an impressive anticancer activity for compound 8j toward MDA-MB-231 cells through inducing apoptosis and a remarkable anti-metastatic feature via suppressing MMP-9 expression as well. Consistently, the in vivo and immunohistopathologic evaluations demonstrated that this compound significantly inhibited the 4T1 induced tumor growth and its metastasis to the lung. Altogether, among numerous thiazolidinone derivatives, compound 8j might represent a promising anticancer agent for TNBC, which is a major concern in the developed and developing countries.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Diseño de Fármacos , Tiazolidinas/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Relación Estructura-Actividad , Tiazolidinas/síntesis química , Tiazolidinas/química , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...