Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neuroendocrinol ; 31(8): e12762, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31228875

RESUMEN

Women are more susceptible to various stress-linked psychopathologies, including depression. Dysfunction of the medial prefrontal cortex (mPFC) has been implicated in depression, and studies indicate sex differences in stress effects on mPFC structure and function. For example, chronic stress induces dendritic atrophy in the mPFC in male rats, yet dendritic growth in females. Recent findings suggest glial pathways toward depression. Glia are highly responsive to neuronal activity and function as critical regulators of synaptic plasticity. Preclinical models demonstrate stress-induced microglial activation in mPFC in males, yet deactivation in females. By contrast, stress reduces astrocyte complexity in mPFC in male rats, whereas the effects in females are unknown. Glia possess receptors for most gonadal hormones and gonadal hormones are known to modulate neuronal activity. Thus, gonadal hormones represent a potential mechanism underlying sex differences in glia, as well as divergent stress effects. Therefore, we examined the role of gonadal hormones in sex-specific stress effects on neuronal activity (ie FosB/ ΔFosB induction) and glia in the mPFC. The findings obtained indicate greater microglial activation in mPFC in females and a greater astrocyte area in males. Basal astrocyte morphology is modulated by androgens, whereas androgens or oestrogens dampen the microglial state in males. Astrocyte morphology is associated with neuronal activity in both sexes, regardless of hormonal condition. Chronic stress induced astrocytic atrophy in males, yet hypertrophy in females, with gonadal hormones partly regulating this difference. Stress effects on microglia are oestradiol-dependent in females. Taken together, these data suggest sex-specific, gonadal hormone-dependent stress effects on astrocytes and microglia in the mPFC.


Asunto(s)
Hormonas Gonadales/farmacología , Neuroglía/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Estrés Psicológico/psicología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/fisiología , Femenino , Masculino , Neuroglía/fisiología , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Corteza Prefrontal/citología , Ratas , Ratas Sprague-Dawley , Caracteres Sexuales , Estrés Psicológico/patología , Estrés Psicológico/fisiopatología
2.
Exp Biol Med (Maywood) ; 242(10): 1095-1103, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28361585

RESUMEN

Cardiac arrest (CA) and cardiocerebral resuscitation (CCR)-induced ischemia-reperfusion imposes oxidative and carbonyl stress that injures the brain. The ischemic shift to anaerobic glycolysis, combined with oxyradical inactivation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), provokes excessive formation of the powerful glycating agent, methylglyoxal. The glyoxalase (GLO) system, comprising the enzymes glyoxalase 1 (GLO1) and GLO2, utilizes reduced glutathione (GSH) supplied by glutathione reductase (GR) to detoxify methylglyoxal resulting in reduced protein glycation. Pyruvate, a natural antioxidant that augments GSH redox status, could sustain the GLO system in the face of ischemia-reperfusion. This study assessed the impact of CA-CCR on the cerebral GLO system and pyruvate's ability to preserve this neuroprotective system following CA. Domestic swine were subjected to 10 min CA, 4 min closed-chest CCR, defibrillation and 4 h recovery, or to a non-CA sham protocol. Sodium pyruvate or NaCl control was infused (0.1 mmol/kg/min, intravenous) throughout CCR and the first 60 min recovery. Protein glycation, GLO1 content, and activities of GLO1, GR, and GAPDH were analyzed in frontal cortex biopsied at 4 h recovery. CA-CCR produced marked protein glycation which was attenuated by pyruvate treatment. GLO1, GR, and GAPDH activities fell by 86, 55, and 30%, respectively, after CA-CCR with NaCl infusion. Pyruvate prevented inactivation of all three enzymes. CA-CCR sharply lowered GLO1 monomer content with commensurate formation of higher molecular weight immunoreactivity; pyruvate preserved GLO1 monomers. Thus, ischemia-reperfusion imposed by CA-CCR disabled the brain's antiglycation defenses. Pyruvate preserved these enzyme systems that protect the brain from glycation stress. Impact statement Recent studies have demonstrated a pivotal role of protein glycation in brain injury. Methylglyoxal, a by-product of glycolysis and a powerful glycating agent in brain, is detoxified by the glutathione-catalyzed glyoxalase (GLO) system, but the impact of cardiac arrest (CA) and cardiocerebral resuscitation (CCR) on the brain's antiglycation defenses is unknown. This study in a swine model of CA and CCR demonstrated for the first time that the intense cerebral ischemia-reperfusion imposed by CA-resuscitation disabled glyoxalase-1 and glutathione reductase (GR), the source of glutathione for methylglyoxal detoxification. Moreover, intravenous administration of pyruvate, a redox-active intermediary metabolite and antioxidant in brain, prevented inactivation of glyoxalase-1 and GR and blunted protein glycation in cerebral cortex. These findings in a large mammal are first evidence of GLO inactivation and the resultant cerebral protein glycation after CA-resuscitation, and identify novel actions of pyruvate to minimize protein glycation in postischemic brain.


Asunto(s)
Encéfalo/patología , Paro Cardíaco/terapia , Fármacos Neuroprotectores/administración & dosificación , Piruvaldehído/toxicidad , Ácido Pirúvico/administración & dosificación , Daño por Reperfusión/prevención & control , Resucitación/efectos adversos , Animales , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Glutatión Reductasa/análisis , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/análisis , Glicosilación , Lactoilglutatión Liasa/análisis , Estrés Oxidativo , Porcinos , Resultado del Tratamiento
3.
J Insect Physiol ; 93-94: 64-71, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27568396

RESUMEN

The metabolic rate of an animal affects the amount of energy available for its growth, activity and reproduction and, ultimately, shapes how energy and nutrients flow through ecosystems. Standard metabolic rate (SMR; when animals are post-absorptive and at rest) and specific dynamic action (SDA; the cost of digesting and processing food) are two major components of animal metabolism. SMR has been studied in hundreds of species of insects, but very little is known about the SMR of praying mantises. We measured the rates of CO2 production as a proxy for metabolic rate and tested the prediction that the SMR of mantises more closely resembles the low SMR of spiders - a characteristic generally believed to be related to their sit-and-wait foraging strategy. Although few studies have examined SDA in insects we also tested the prediction that mantises would exhibit comparatively large SDA responses characteristic of other types of predators (e.g., snakes) known to consume enormous, protein-rich meals. The SMR of the mantises was positively correlated with body mass and did not differ among the four species we examined. Their SMR was best described by the equation µW=1526*g0.745 and was not significantly different from that predicted by the standard 'insect-curve'; but it was significantly higher than that of spiders to which mantises are ecologically more similar than other insects. Mantises consumed meals as large as 138% of their body mass and within 6-12h of feeding and their metabolic rates doubled before gradually returning to prefeeding rates over the subsequent four days. We found that the SDA responses were isometrically correlated with meal size and the relative cost of digestion was 38% of the energy in each meal. We conclude that mantises provide a promising model to investigate nutritional physiology of insect predators as well as nutrient cycling within their ecological communities.


Asunto(s)
Metabolismo Energético , Mantódeos/fisiología , Periodo Posprandial , Animales , Peso Corporal , Conducta Alimentaria , Mantódeos/crecimiento & desarrollo , Ninfa/crecimiento & desarrollo , Ninfa/fisiología , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...