Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Noncoding RNA ; 10(1)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38392969

RESUMEN

Tumors have high requirements in terms of nutrients and oxygen. Angiogenesis is the classical mechanism for vessel formation. Tumoral vascularization has the function of nourishing the cancer cells to support tumor growth. Vasculogenic mimicry, a novel intratumoral microcirculation system, alludes to the ability of cancer cells to organize in three-dimensional (3D) channel-like architectures. It also supplies the tumors with nutrients and oxygen. Both mechanisms operate in a coordinated way; however, their functions in breast cancer stem-like cells and their regulation by microRNAs remain elusive. In the present study, we investigated the functional role of microRNA-204 (miR-204) on angiogenesis and vasculogenic mimicry in breast cancer stem-like cells. Using flow cytometry assays, we found that 86.1% of MDA-MB-231 and 92% of Hs-578t breast cancer cells showed the CD44+/CD24- immunophenotype representative of cancer stem-like cells (CSCs). The MDA-MB-231 subpopulation of CSCs exhibited the ability to form mammospheres, as expected. Interestingly, we found that the restoration of miR-204 expression in CSCs significantly inhibited the number and size of the mammospheres. Moreover, we found that MDA-MB-231 and Hs-578t CSCs efficiently undergo angiogenesis and hypoxia-induced vasculogenic mimicry in vitro. The transfection of precursor miR-204 in both CSCs was able to impair the angiogenesis in the HUVEC cell model, which was observed as a diminution in the number of polygons and sprouting cells. Remarkably, miR-204 mimics also resulted in the inhibition of vasculogenic mimicry formation in MDA-MB-231 and Hs-578t CSCs, with a significant reduction in the number of channel-like structures and branch points. Mechanistically, the effects of miR-204 were associated with a diminution of pro-angiogenic VEGFA and ß-catenin protein levels. In conclusion, our findings indicated that miR-204 abrogates the angiogenesis and vasculogenic mimicry development in breast cancer stem-like cells, suggesting that it could be a potential tool for breast cancer intervention based on microRNA replacement therapies.

2.
Cells ; 11(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36359853

RESUMEN

Organotypic three-dimensional (3D) cell cultures more accurately mimic the characteristics of solid tumors in vivo in comparison with traditional two-dimensional (2D) monolayer cell models. Currently, studies on the regulation of long non-coding RNAs (lncRNAs) have not been explored in breast cancer cells cultured in 3D microenvironments. In the present research, we studied the expression and potential roles of lncRNAs in estrogen receptor-positive luminal B subtype BT-474 breast cancer cells grown over extracellular matrix proteins-enriched 3D cultures. Global expression profiling using DNA microarrays identifies 290 upregulated and 183 downregulated lncRNAs in 3D cultures relative to 2D condition. Using a co-expression analysis approach of lncRNAs and mRNAs pairs expressed in the same experimental conditions, we identify hundreds of regulatory axes modulating genes involved in cancer hallmarks, such as responses to estrogens, cell proliferation, hypoxia, apical junctions, and resistance to endocrine therapy. In addition, we identified 102 lncRNAs/mRNA correlations in 3D cultures, which were similar to those reported in TCGA datasets obtained from luminal B breast cancer patients. Interestingly, we also found a set of mRNAs transcripts co-expressed with LINC00847 and CTD-2566J3.1 lncRNAs, which were predictors of pathologic complete response and overall survival. Finally, both LINC00847 and CTD -2566J3.1 were co-expressed with essential genes for cancer genetic dependencies, such as FOXA1 y GINS2. Our experimental and predictive findings show that co-expressed lncRNAs/mRNAs pairs exhibit a high degree of similarity with those found in luminal B breast cancer patients, suggesting that they could be adequate pre-clinical tools to identify not only biomarkers related to endocrine therapy response and PCR, but to understand the biological behavior of cancer cells in 3D microenvironments.


Asunto(s)
Neoplasias de la Mama , ARN Largo no Codificante , Humanos , Femenino , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica , Oncogenes , Carcinogénesis/genética , Microambiente Tumoral/genética , Proteínas Cromosómicas no Histona/metabolismo
3.
Front Oncol ; 12: 826113, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35692756

RESUMEN

Traditional two-dimensional (2D) monolayer cell cultures have long been the gold standard for cancer biology research. However, their ability to accurately reflect the molecular mechanisms of tumors occurring in vivo is limited. Recent development of three-dimensional (3D) cell culture models facilitate the possibility to better recapitulate several of the biological and molecular characteristics of tumors in vivo, such as cancer cells heterogeneity, cell-extracellular matrix interactions, development of a hypoxic microenvironment, signaling pathway activities depending on contacts with extracellular matrix, differential growth kinetics, more accurate drugs response, and specific gene expression and epigenetic patterns. In this review, we discuss the utilization of different types of 3D culture models including spheroids, organotypic models and patient-derived organoids in gynecologic cancers research, as well as its potential applications in oncological research mainly for screening drugs with major physiological and clinical relevance. Moreover, microRNAs regulation of cancer hallmarks in 3D cell cultures from different types of cancers is discussed.

4.
Methods Mol Biol ; 2514: 53-60, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35771418

RESUMEN

Vasculogenic mimicry is a cellular mechanism in which tumor cells grow and align forming complex three-dimensional (3D) channel-like structures in a hypoxic microenvironment. This phenomenon represents a novel oxygen, nutrient, and blood supply, in a similar way as occurs in classic angiogenesis. Vasculogenic mimicry has been described in numerous clinical tumors including breast, prostate, lung, and ovarian cancers where it is associated with poor prognosis; thus, it is considered as a hallmark of highly aggressive and metastatic tumors. Here, we describe a simple method to model the in vitro formation of three-dimensional cellular networks over Matrigel in SKOV3 ovarian cancer cells representing the early stages of vasculogenic mimicry.


Asunto(s)
Neoplasias Ováricas , Carcinoma Epitelial de Ovario , Diferenciación Celular , Línea Celular Tumoral , Femenino , Humanos , Masculino , Neovascularización Patológica/patología , Neoplasias Ováricas/patología , Microambiente Tumoral
5.
Cancers (Basel) ; 14(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35626094

RESUMEN

The 3D organotypic cultures, which depend on the growth of cells over the extracellular matrix (ECM) used as a scaffold, can better mimic several characteristics of solid cancers that influence tumor biology and the response to drug therapies. Most of our current knowledge on cancer is derived from studies in 2D cultures, which lack the ECM-mediated microenvironment. Moreover, the role of miRNAs that is critical for fine-tuning of gene expression is poorly understood in 3D cultures. The aim of this study was to compare the miRNA expression profiles of breast cancer cells grown in 2D and 3D conditions. On an on-top 3D cell culture model using a basement membrane matrix enriched with laminin, collagen IV, entactin, and heparin-sulfate proteoglycans, the basal B (Hs578T) and luminal (T47D) breast cancer cells formed 3D spheroid-like stellate and rounded mass structures, respectively. Morphological changes in 3D cultures were observed as cell stretching, cell-cell, and cell-ECM interactions associated with a loss of polarity and reorganization on bulk structures. Interestingly, we found prolongations of the cytoplasmic membrane of Hs578T cells similar to tunneled nanotubes contacting between neighboring cells, suggesting the existence of cellular intercommunication processes and the possibility of fusion between spheroids. Expression profiling data revealed that 354 miRNAs were differentially expressed in 3D relative to 2D cultures in Hs578T cells. Downregulated miRNAs may contribute to a positive regulation of genes involved in hypoxia, catabolic processes, and focal adhesion, whereas overexpressed miRNAs modulate genes involved in negative regulation of the cell cycle. Target genes of the top ten modulated miRNAs were selected to construct miRNA/mRNA coregulation networks. Around 502 interactions were identified for downregulated miRNAs, including miR-935/HIF1A and miR-5189-3p/AKT that could contribute to cell migration and the response to hypoxia. Furthermore, the expression levels of miR-935 and its target HIF1A correlated with the expression found in clinical tumors and predicted poor outcomes. On the other hand, 416 interactions were identified for overexpressed miRNAs, including miR-6780b-5p/ANKRD45 and miR-7641/CDK4 that may result in cell proliferation inhibition and cell cycle arrest in quiescent layers of 3D cultures. In conclusion, 3D cultures could represent a suitable model that better resembles the miRNA transcriptional programs operating in tumors, with implications not only in the understanding of basic cancer biology in 3D microenvironments, but also in the identification of novel biomarkers of disease and potential targets for personalized therapies in cancer.

6.
Curr Pharm Biotechnol ; 23(2): 221-234, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33655827

RESUMEN

Endometrial cancer represents the most frequent neoplasia from the corpus uteri and comprises the 14th leading cause of death in women worldwide. Risk factors that contribute to the disease include early menarche, late menopause, nulliparity, and menopausal hormone use, as well as hypertension and obesity comorbidities. The clinical effectiveness of chemotherapy is variable, suggesting that novel molecular targeted therapies against specific cellular processes associated with the maintenance of cancer cell survival and therapy resistance ameliorate the rates of success in endometrial cancer treatment. In the course of tumor growth, cancer cells must adapt to decreased oxygen availability in the microenvironment by upregulation of hypoxia-inducible factors, which orchestrate the activation of a transcriptional program leading to cell survival. During this adaptative process, the hypoxic cancer cells may acquire invasive and metastatic properties as well as increased cell proliferation and resistance to chemotherapy, enhanced angiogenesis, vasculogenic mimicry, and maintenance of cancer cell stemness, which contribute to more aggressive cancer phenotypes. Several studies have shown that hypoxia-inducible factor 1 alpha (HIF-1α) protein is aberrantly overexpressed in many solid tumors of the breast, prostate, ovarian, bladder, colon, brain, and pancreas. Thus, it has been considered an important therapeutic target. Here, we reviewed the current knowledge of the relevant roles of cellular hypoxia mechanisms and HIF-1α functions in diverse processes associated with endometrial cancer progression. In addition, we also summarize the role of microRNAs in the posttranscriptional regulation of protein-encoding genes involved in the hypoxia response in endometrial cancer. Finally, we pointed out the need for urgent targeted therapies to impair the cellular processes activated by hypoxia in the tumor microenvironment.


Asunto(s)
Neoplasias Endometriales , MicroARNs , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia , Microambiente Tumoral
7.
Cells ; 10(6)2021 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-34204094

RESUMEN

Non-coding RNAs are emergent elements from the genome, which do not encode for proteins but have relevant cellular functions impacting almost all the physiological processes occurring in eukaryotic cells. In particular, microRNAs and long non-coding RNAs (lncRNAs) are a new class of small RNAs transcribed from the genome, which modulate the expression of specific genes at transcriptional and posttranscriptional levels, thus adding a new regulatory layer in the flux of genetic information. In cancer cells, the miRNAs and lncRNAs interactions with its target genes and functional pathways are deregulated as a consequence of epigenetic and genetic alterations occurring during tumorigenesis. In this review, we summarize the actual knowledge on the interplay of lncRNAs with its cognate miRNAs and mRNAs pairs, which interact in coregulatory networks with a particular emphasis on the mechanisms underlying its oncogenic behavior in ovarian cancer. Specifically, we reviewed here the evidences unraveling the relevant roles of lncRNAs/miRNAs pairs in altered regulation of cell migration, angiogenesis, therapy resistance, and Warburg effect. Finally, we also discussed its potential clinical implications in ovarian cancer and related endocrine disease therapies.


Asunto(s)
Redes Reguladoras de Genes , MicroARNs/metabolismo , Neovascularización Patológica/metabolismo , Neoplasias Ováricas/irrigación sanguínea , Neoplasias Ováricas/metabolismo , ARN Largo no Codificante/metabolismo , ARN Neoplásico/metabolismo , Movimiento Celular/genética , Femenino , Humanos , MicroARNs/genética , Neovascularización Patológica/genética , Neoplasias Ováricas/genética , ARN Largo no Codificante/genética , ARN Neoplásico/genética
8.
Cells ; 11(1)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-35011637

RESUMEN

A growing body of research on the transcriptome and cancer genome has demonstrated that many gynecological tumor-specific gene mutations are located in cis-regulatory elements. Through chromosomal looping, cis-regulatory elements interact which each other to control gene expression by bringing distant regulatory elements, such as enhancers and insulators, into close proximity with promoters. It is well known that chromatin connections may be disrupted in cancer cells, promoting transcriptional dysregulation and the expression of abnormal tumor suppressor genes and oncogenes. In this review, we examine the roles of alterations in 3D chromatin interactions. This includes changes in CTCF protein function, cancer-risk single nucleotide polymorphisms, viral integration, and hormonal response as part of the mechanisms that lead to the acquisition of enhancers or super-enhancers. The translocation of existing enhancers, as well as enhancer loss or acquisition of insulator elements that interact with gene promoters, is also revised. Remarkably, similar processes that modify 3D chromatin contacts in gene promoters may also influence the expression of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), which have emerged as key regulators of gene expression in a variety of cancers, including gynecological malignancies.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , Cromatina/metabolismo , Neoplasias de los Genitales Femeninos/genética , Genoma Humano , Transcripción Genética , Animales , Neoplasias de la Mama/patología , Carcinogénesis/patología , Femenino , Neoplasias de los Genitales Femeninos/patología , Humanos
9.
Sci Rep ; 10(1): 10555, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601379

RESUMEN

Chemotherapy activates a novel cytoplasmic DNA damage response resulting in Golgi apparatus fragmentation and cancer cell survival. This mechanism is regulated by Golgi phosphoprotein-3 (GOLPH3)/Myo18A/F-actin axis. Analyzing the functions of miR-3135b, a small non-coding RNA with unknown functions, we found that its forced overexpression attenuates the Golgi apparatus fragmentation induced by chemotherapeutic drugs in colorectal cancer (CRC) cells. First, we found that miR-3135b is downregulated in CRC cell lines and clinical tumors. Bioinformatic predictions showed that miR-3135b could be regulating protein-encoding genes involved in cell survival, resistance to chemotherapy, and Golgi dynamics. In agreement, ectopic transfection of miR-3135b in HCT-15 cancer cells significantly inhibited cell proliferation, sensitized cells to 5-fluoruracil (5-FU), and promoted late apoptosis and necrosis. Also, miR-3135b overexpression impaired the cell cycle progression in HCT-15 and SW-480 cancer cells. Because GOLPH3, a gene involved in maintenance of Golgi structure, was predicted as a potential target of miR-3135b, we studied their functional relationships in response to DNA damage induced by chemotherapy. Immunofluorescence and cellular ultrastructure experiments using antibodies against TGN38 protein, a trans-Golgi network marker, showed that 5-FU and doxorubicin treatments result in an apoptosis-independent stacks dispersal of the Golgi ribbon structure in both HCT-15 and SW-480 cells. Remarkably, these cellular effects were dramatically hindered by transfection of miR-3135b mimics. In addition, our functional studies confirmed that miR-3135b binds to the 3'-UTR of GOLPH3 proto-oncogene, and also reduces the levels of p-AKT1 (Ser473) and p-mTOR (Ser2448) signaling transducers, which are key in cell survival and autophagy activation. Moreover, we found that after treatment with 5-FU, TGN38 factor coimmunolocalizes with beclin-1 autophagic protein in discrete structures associated with the fragmented Golgi, suggesting that the activation of pro-survival autophagy is linked to loss of Golgi integrity. These cellular effects in autophagy and Golgi dispersal were reversed by miR-3135b. In summary, we provided experimental evidence suggesting for the first time a novel role for miR-3135b in the protection of chemotherapy-induced Golgi fragmentation via GOLPH3/AKT1/mTOR axis and protective autophagy in colorectal cancer cells.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Regiones no Traducidas 3' , Apoptosis/fisiología , Autofagia/fisiología , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Daño del ADN , Aparato de Golgi/metabolismo , Humanos , MicroARNs/genética , Proto-Oncogenes Mas , Transducción de Señal
11.
Noncoding RNA ; 6(2)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466537

RESUMEN

HOX transcript antisense RNA (HOTAIR) is an oncogenic long non-coding RNA frequently overexpressed in cancer. HOTAIR can enhance the malignant behavior of tumors by sponging microRNAs with tumor suppressor functions. Vasculogenic mimicry is a hypoxia-activated process in which tumor cells form three-dimensional (3D) channel-like networks, resembling endothelial blood vessels, to obtain nutrients. However, the role of HOTAIR in vasculogenic mimicry and the underlying mechanisms are unknown in human cancers. In the current study, we investigated the relevance of HOTAIR in hypoxia-induced vasculogenic mimicry in metastatic MDA-MB-231 and invasive Hs-578t triple negative breast cancer cells. Analysis of The Cancer Genome Atlas (TCGA) database using cBioPortal confirmed that HOTAIR was upregulated in clinical breast tumors relative to normal mammary tissues. Our quantitative RT-PCR assays showed a significant increase in HOTAIR levels after 48 h hypoxia relative to normoxia in breast cancer cell lines. Remarkably, knockdown of HOTAIR significantly abolished the hypoxia-induced vasculogenic mimicry which was accompanied by a reduction in the number of 3D channel-like networks and branch points. Likewise, HOTAIR silencing leads to reduced cell migration abilities of cancer cells. Bioinformatic analysis predicted that HOTAIR has a potential binding site for tumor suppressor miR-204. Luciferase reporter assays confirmed that HOTAIR is a competitive endogenous sponge of miR-204. Congruently, forced inhibition of HOTAIR in cells resulted in augmented miR-204 levels in breast cancer cells. Further bioinformatic analysis suggested that miR-204 can bind to the 3' untranslated region of focal adhesion kinase 1 (FAK) transcript involved in cell migration. Western blot and luciferase reporter assays confirmed that FAK is a novel target of miR-204. Finally, silencing of HOTAIR resulted in low levels of cytoplasmic FAK protein and alterations in the organization of cellular cytoskeleton and focal adhesions. In summary, our results showed, for the first time, that HOTAIR mitigates cell migration and vasculogenic mimicry by targeting the miR-204/FAK axis in triple negative breast cancer cells.

12.
Front Oncol ; 9: 1326, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31850214

RESUMEN

Endometrial cancer is the fourth most frequent neoplasia for women worldwide, and over the past two decades it incidence has increased. The most common histological type of endometrial cancer is endometrioid adenocarcinoma, also known as type 1 endometrial cancer. Endometrioid endometrial cancer is associated with diverse epidemiological risk factors including estrogen use, obesity, diabetes, cigarette smoking, null parity, early menarche, and late menopause. Clinical effectiveness of chemotherapy is variable, indicating that novel molecular therapies against specific cellular processes associated to cell survival and resistance to therapy, such as autophagy, urged to ameliorate the rates of success in endometrial cancer treatment. Autophagy (also known as macroautophagy) is a specialized mechanism that maintains cell homeostasis which is activated in response to cellular stressors including nutrients deprivation, amino acids starvation, hypoxia, and metabolic stress to prolong cell survival via lysosomal degradation of cytoplasmic macromolecules and organelles. However, in human cancer cells, autophagy has a controversial function due to its dual role as self-protective or apoptotic. Conventional antitumor therapies including hormones, chemotherapy and ionizing radiation, may activate autophagy as a pro-survival tumor response contributing to treatment resistance. Intriguingly, if autophagy continues above reversibility of cell viability, autophagy can result in apoptosis of tumor cells. Here, we have reviewed the mechanisms of autophagy described in endometrial cancers, including the role of PI3K/AKT/mTOR, AMPK-mTOR, and p53 signaling pathways that trigger or inhibit the process and thus representing potential molecular targets in therapeutic clinical approaches. In addition, we discussed the recent findings indicating that autophagy can be modulated using repurposing drugs which may leads to faster experimentation and validation, as well as more easy access of the medications to patients. Finally, the promising role of dietary compounds and microRNAs in autophagy modulation is also discussed. In conclusion, although the research about autophagy is scarce but ongoing in endometrial cancer, the actual findings highlight the promising usefulness of novel molecules for directing targeted therapies.

13.
Front Oncol ; 9: 381, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31157166

RESUMEN

Vasculogenic mimicry (VM) is a novel cancer hallmark in which malignant cells develop matrix-associated 3D tubular networks with a lumen under hypoxia to supply nutrients needed for tumor growth. Recent studies showed that microRNAs (miRNAs) may have a role in VM regulation. In this study, we examined the relevance of hypoxia-regulated miRNAs (hypoxamiRs) in the early stages of VM formation. Data showed that after 48 h hypoxia and 12 h incubation on matrigel SKOV3 ovarian cancer cells undergo the formation of matrix-associated intercellular connections referred hereafter as 3D channels-like structures, which arose previous to the apparition of canonical tubular structures representative of VM. Comprehensive profiling of 754 mature miRNAs at the onset of hypoxia-induced 3D channels-like structures showed that 11 hypoxamiRs were modulated (FC>1.5; p < 0.05) in SKOV3 cells (9 downregulated and 2 upregulated). Bioinformatic analysis of the set of regulated miRNAs showed that they might impact cellular pathways related with tumorigenesis. Moreover, overall survival analysis in a cohort of ovarian cancer patients (n = 485) indicated that low miR-765, miR-193b, miR-148a and high miR-138 levels were associated with worst patients outcome. In particular, miR-765 was severely downregulated after hypoxia (FC < 32.02; p < 0.05), and predicted to target a number of protein-encoding genes involved in angiogenesis and VM. Functional assays showed that ectopic restoration of miR-765 in SKOV3 cells resulted in a significant inhibition of hypoxia-induced 3D channels-like formation that was associated with a reduced number of branch points and patterned tubular-like structures. Mechanistic studies confirmed that miR-765 decreased the levels of VEGFA, AKT1 and SRC-α transducers and exerted a negative regulation of VEGFA by specific binding to its 3'UTR. Finally, overall survival analysis of a cohort of ovarian cancer patients (n = 1435) indicates that high levels of VEGFA, AKT1 and SRC-α and low miR-765 expression were associated with worst patients outcome. In conclusion, here we reported a novel hypoxamiRs signature which constitutes a molecular guide for further clinical and functional studies on the early stages of VM. Our data also suggested that miR-765 coordinates the formation of 3D channels-like structures through modulation of VEGFA/AKT1/SRC-α axis in SKOV3 ovarian cancer cells.

14.
Oncol Rep ; 41(6): 3527-3534, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31002371

RESUMEN

Cancer patients who better benefit from neoadjuvant chemotherapy (NeoCh) are those who achieve a successful pathological complete response (pCR) represented by the absence of residual disease. Unfortunately, no highly sensitive and specific tumor biomarkers for predicting the clinical response to NeoCh have yet been defined. The aim of the present study was to ascertain whether miR­145­5p could discriminate between pCR and no­pCR in triple­negative breast cancer patients that received a cisplatin/doxorubicin­based neoadjuvant treatment. miR­145­5p expression was determined in breast tumors by quantitative RT­PCR. Our data showed that miR­145­5p had a significant low expression (P<0.005) in patients that achieved pCR in comparison to the non­responder group. Kaplan Meier analysis indicated that low levels of miR­145­5p were associated with increased disease­free survival. In addition, receiver operating characteristic (ROC) curve analysis suggested that miR­145­5p is a good predictor of pCR (P<0.003, AUC=0.7899, 95% CI, 0.6382­0.9416). Quantitative RT­PCR expression analysis also revealed that miR­145­5p was downregulated in four breast cancer cell lines relative to normal cells. To study the functions of miR­145­5p, its expression was restored in triple­negative MDA­MB­231 cells and its effects in cell proliferation were evaluated by MTT assays and in apoptosis using Annexin V experiments. Data revealed that ectopic expression of miR­145­5p resulted in a significant inhibition of cell proliferation and also induced apoptosis. Moreover, miR­145­5p led to sensitization of breast cancer cells to cisplatin therapy. In addition, western blot assays indicated that miR­145­5p downregulated the TGFßR2 protein. In conclusion, miR­145­5p could be a potential biomarker of clinical response to NeoCh in triple­negative breast cancer. Functionally miR­145­5p may regulate cell proliferation, at least in part, by targeting TGFßR2.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , MicroARNs/genética , Terapia Neoadyuvante/efectos adversos , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Adulto , Anciano , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Estimación de Kaplan-Meier , Persona de Mediana Edad , Neoplasia Residual/tratamiento farmacológico , Neoplasia Residual/genética , Neoplasia Residual/patología
15.
Int J Mol Med ; 43(2): 657-670, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30483765

RESUMEN

Angiogenesis is an important hallmark of cancer serving a key role in tumor growth and metastasis. Therefore, tumor angiogenesis has become an attractive target for development of novel drug therapies. An increased amount of anti­angiogenic compounds is currently in preclinical and clinical development for personalized therapies. However, resistance to current angiogenesis inhibitors is emerging, indicating that there is a need to identify novel anti­angiogenic agents. In the last decade, the field of microRNA biology has exploded revealing unsuspected functions in tumor angiogenesis. These small non­coding RNAs, which have been dubbed as angiomiRs, may target regulatory molecules driving angiogenesis, such as cytokines, metalloproteinases and growth factors, including vascular endothelial growth factor, platelet­derived growth factor, fibroblast growth factor, epidermal growth factor, hypoxia inducible factor­1, as well as mitogen­activated protein kinase, phosphoinositide 3­kinase and transforming growth factor signaling pathways. The present review discusses the current progress towards understanding the functions of miRNAs in tumor angiogenesis regulation in diverse types of human cancer. Furthermore, the potential clinical application of angiomiRs towards anti­angiogenic tumor therapy was explored.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , MicroARNs/uso terapéutico , Neoplasias/irrigación sanguínea , Neovascularización Patológica/tratamiento farmacológico , Inhibidores de la Angiogénesis/genética , Animales , Femenino , Humanos , Ratones , MicroARNs/genética , Terapia Molecular Dirigida , Neovascularización Patológica/genética , Microambiente Tumoral/efectos de los fármacos
16.
Front Oncol ; 9: 1419, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31993365

RESUMEN

Vasculogenic mimicry (VM) is a mechanism whereby cancer cells form microvascular structures similar to three-dimensional channels to provide nutrients and oxygen to tumors. Unlike angiogenesis, VM is characterized by the development of new patterned three-dimensional vascular-like structures independent of endothelial cells. This phenomenon has been observed in many types of highly aggressive solid tumors. The presence of VM has also been associated with increased resistance to chemotherapy, low survival, and poor prognosis. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are non-coding RNAs that regulate gene expression at the post-transcriptional level through different pathways. In recent years, these tiny RNAs have been shown to be expressed aberrantly in different human malignancies, thus contributing to the hallmarks of cancer. In this context, miRNAs and lncRNAs can be excellent biomarkers for diagnosis, prognosis, and the prediction of response to therapy. In this review, we discuss the role that the tumor microenvironment and the epithelial-mesenchymal transition have in VM. We include an overview of the mechanisms of VM with examples of diverse types of tumors. Finally, we describe the regulation networks of lncRNAs-miRNAs and their clinical impact with the VM. Knowing the key genes that regulate and promote the development of VM in tumors with invasive, aggressive, and therapy-resistant phenotypes will facilitate the discovery of novel biomarker therapeutics against cancer as well as tools in the diagnosis and prognosis of patients.

17.
Cancer Lett ; 432: 17-27, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-29885516

RESUMEN

RNA-based multi-target therapies focused in the blocking of signaling pathways represent an attractive approach in cancer. Here, we uncovered a miR-204 cooperative targeting of multiple signaling transducers involved in vasculogenic mimicry (VM). Our data showed that invasive triple negative MDA-MB-231 and Hs-578T breast cancer cells, but not poorly invasive MCF-7 cells, efficiently undergoes matrix-associated VM under hypoxia. Ectopic restoration of miR-204 in MDA-MB-231 cells leads to a potent inhibition of VM and reduction of number of branch points and patterned 3D channels. Further analysis of activation state of multiple signaling pathways using Phosphorylation Antibody Arrays revealed that miR-204 reduced the expression and phosphorylation levels of 13 proteins involved in PI3K/AKT, RAF1/MAPK, VEGF, and FAK/SRC signaling. In agreement with phospho-proteomic profiling, VM was impaired following pharmacological administration of PI3K and SRC inhibitors. Mechanistic studies confirmed that miR-204 exerts a negative post-transcriptional regulation of PI3K-α and c-SRC proto-oncogenes. Moreover, overall survival analysis of a large cohort of breast cancer patients indicates that low miR-204 and high FAK/SRC levels were associated with worst outcomes. In conclusion, our study provides novel lines of evidence indicating that miR-204 may exerts a fine-tuning regulation of the synergistic transduction of PI3K/AKT/FAK mediators critical in VM formation.


Asunto(s)
Biomarcadores de Tumor/metabolismo , MicroARNs/genética , Neovascularización Patológica/prevención & control , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Mimetismo Biológico , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico , Proteómica , Transducción de Señal , Tasa de Supervivencia , Neoplasias de la Mama Triple Negativas/irrigación sanguínea , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas
18.
Oncol Rep ; 39(6): 3086-3094, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29658612

RESUMEN

Altered expression of microRNAs contributes to the heterogeneous biological behavior of human malignancies and it may correlate with the clinical pathological features of patients. The let-7 microRNA family is frequently downregulated in human cancers and its aberrant expression may be a useful marker for prediction of the clinical response to therapy in patients. In the present study, we analyzed the expression of three members of the let-7 family (let-7a-3p, let-7d-3p and let-7f), which remains largely uncharacterized in ovarian cancer tissues. We also investigated the function of let-7d-3p in the apoptosis and sensitization to chemotherapy in ovarian cancer cells. Our data from stem-loop quantitative RT-PCR showed that expression of let-7a-3p and let-7d-3p, but not let-7f, was significantly (P<0.04) upregulated in ovarian tumors relative to that noted in normal ovarian tissues. Markedly, an increased expression of let­7d-3p (also known as let-7d-3*) was associated with positive response to carboplatin/paclitaxel treatment in ovarian cancer patients. To investigate the biological relevance of let­7d-3p, we knocked down its expression in SKOV-3 ovarian cancer cell line using antagomiRs. Loss of function analysis showed that inhibition of let-7d-3p significantly (P<0.05) impaired cell proliferation and activated apoptosis. In contrast, scratch/wound healing and Transwell chamber assays showed that migration and invasion abilities were not affected in the let-7d-3p-deficient SKOV-3 cancer cells. Notably, Annexin V assays showed a significant (P<0.05) increase in cell death of cancer cells treated with the let-7d-3p inhibitor plus carboplatin indicating a synergistic effect of the drug with antagomiR therapy. Gene ontology classification of predicted targets of let-7d-3p identified a number of genes involved in cellular pathways associated with therapy resistance such as ABC transporters, HIF-1, RAS and ErbB signaling. In summary, our findings showed that inhibition of let-7d-3 activates apoptosis and that its upregulation is associated with a positive response of ovarian cancer patients to carboplatin/paclitaxel chemotherapy.


Asunto(s)
Carboplatino/uso terapéutico , MicroARNs/genética , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel/uso terapéutico , Regulación hacia Arriba , Adulto , Anciano , Apoptosis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad , Terapia Neoadyuvante , Neoplasias Ováricas/genética , Regulación hacia Arriba/efectos de los fármacos
19.
Artículo en Inglés | MEDLINE | ID: mdl-30671387

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs that function as negative regulators of gene expression. Recent evidences suggested that host cells miRNAs are involved in the progression of infectious diseases, but its role in amoebiasis remains largely unknown. Here, we reported an unexplored role for miRNAs of human epithelial colon cells during the apoptosis induced by Entamoeba histolytica. We demonstrated for the first time that SW-480 colon cells change their miRNAs profile in response to parasite exposure. Our data showed that virulent E. histolytica trophozoites induced apoptosis of SW-480 colon cells after 45 min interaction, which was associated to caspases-3 and -9 activation. Comprehensive profiling of 667 miRNAs using Taqman Low-Density Arrays showed that 6 and 15 miRNAs were significantly (FC > 1.5; p < 0.05) modulated in SW-480 cells after 45 and 75 min interaction with parasites, respectively. Remarkably, no significant regulation of the 6-miRNAs signature (miR-526b-5p, miR-150, miR-643, miR-615-5p, miR-525, and miR-409-3p) was found when SW-480 cells were exposed to non-virulent Entamoeba dispar. Moreover, we confirmed that miR-150, miR-643, miR-615-5p, and miR-525 exhibited similar regulation in SW-480 and Caco2 colon cells after 45 min interaction with trophozoites. Exhaustive bioinformatic analysis of the six-miRNAs signature revealed intricate miRNAs-mRNAs co-regulation networks in which the anti-apoptotic XIAP, API5, BCL2, and AKT1 genes were the major targets of the set of six-miRNAs. Of these, we focused in the study of functional relationships between miR-643, upregulated at 45 min interaction, and its predicted target X-linked inhibitor of apoptosis protein (XIAP). Interestingly, interplay of amoeba with SW-480 cells resulted in downregulation of XIAP consistent with apoptosis activation. More importantly, loss of function studies using antagomiRs showed that forced inhibition of miR-643 leads to restoration of XIAP levels and suppression of both apoptosis and caspases-3 and -9 activation. Congruently, mechanistic studies using luciferase reporter assays confirmed that miR-643 exerts a postranscripcional negative regulation of XIAP by targeting its 3'-UTR indicating that it's a downstream effector. In summary, we provide novel lines of evidence suggesting that early-branched eukaryote E. histolytica may promote apoptosis of human colon cells by modulating, in part, the host microRNome which highlight an unexpected role for miRNA-643/XIAP axis in the host cellular response to parasites infection.


Asunto(s)
Apoptosis , Entamoeba histolytica/crecimiento & desarrollo , Células Epiteliales/parasitología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , MicroARNs/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Línea Celular , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Factores de Tiempo
20.
Int J Oncol ; 50(5): 1461-1476, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28393213

RESUMEN

Epithelial ovarian cancer is the fifth most frequent cause of cancer death in women. In spite of the advantages in early detection and treatment options, overall survival rates have improved only slightly in the last decades. Therefore, alternative therapeutic approaches need to overcome resistance and improve the patient survival and outcome. MicroRNAs are evolutionary conserved small non-coding RNAs that function as negative regulators of gene expression by inhibiting translation or inducing degradation of messenger RNAs. In cancer, microRNAs are aberrantly expressed thus representing potential prognostic biomarkers and novel therapeutic targets. The knowledge of novel and unexpected functions of microRNAs is rapidly evolving and the advance in the elucidation of potential clinical applications deserves attention. Recently, a specific set of microRNAs dubbed as metastamiRs have been shown to initiate invasion and metastasis in diverse types of cancer. We reviewed the current status of microRNAs in development and progression of ovarian cancer with a special emphasis on tumor cells invasion and metastasis. Also, we show an update of microRNA functions in oncogenic pathways and discuss the current scenario for potential applications in clinical and translational research in ovarian cancer.


Asunto(s)
MicroARNs/genética , Neoplasias Ováricas/genética , Investigación Biomédica Traslacional , Biomarcadores de Tumor/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis de la Neoplasia , Neoplasias Ováricas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...