Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39269096

RESUMEN

Ocean acidification has become a major climate change concern requiring continuous observation. Additionally, in the industry, pH surveillance is of great importance. Consequently, there is a pressing demand to develop robust and inexpensive pH sensors. Ratiometric fluorescence pH sensing stands out as a promising concept. The application of carbon dots in fluorescent sensing presents a compelling avenue for the advancement of pH-sensing solutions. This potential is underpinned by the affordability of carbon dots, their straightforward manufacturing process, low toxicity, and minimal susceptibility to photobleaching. Thus, investigating novel carbon dots is essential to identify optimal pH-sensitive candidates. In this study, five carbon dots were synthesized through a simple solvothermal treatment, and their fluorescence was examined as a function of pH within the range of 5-9, across an excitation range of 200-550 nm and an emission range of 250-750 nm. The resulting optical features showed that all five carbon dots exhibited pH sensitivity in both the UV and visible regions. One type of carbon dot, synthesized from m-phenylenediamine, displayed ratiometric properties at four excitation wavelengths, with the best results observed when excited in the visible spectrum at 475 nm. Indeed, these carbon dots exhibited good linearity over pH values of 6-9 in aqueous Carmody buffer solution by calculating the ratio of the green emission band at 525 nm to the orange one at 630 nm (I525nm/I630nm), demonstrating highly suitable properties for ratiometric sensing.

2.
Chemistry ; : e202402600, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291646

RESUMEN

G-quadruplexes (G4s), as non-canonical DNA structures, attract a great deal of research interest in the molecular biology as well as in the material science fields. The use of small molecules as ligands for G-quadruplexes has emerged as a tool to regulate gene expression and telomeres maintenance. Meso-tetrakis-(N-methyl-4-pyridyl)porphyrin (TMPyP4) was shown as one of the first ligands for G-quadruplexes and it is still widely used. We report an investigation comprising molecular docking and dynamics, synthesis and multiple spectroscopic and spectrometric determinations on simple cationic porphyrins and their interaction with different DNA sequences. The study allowed to synthesize a few compounds that have shown to interact with DNA; the detailed characterization has shown that the presence of amide groups at the periphery improves selectivity for parallel G4s binding over other structures. Taking into account the ease of synthesis, 5,10,15,20-tetrakis-(1-acetamido-4-pyridyl)porphyrin bromide could be considered a better alternative to TMPyP4 in studies involving G4 binding.

3.
J Colloid Interface Sci ; 677(Pt A): 540-547, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39106779

RESUMEN

The effect of buffer species on biomolecules and biomolecule-nanoparticle interactions is a phenomenon that has been either neglected, or not understood. Here, we study the formation of a BSA protein corona (PC) around amino-functionalized mesoporous silica nanoparticles (MSN-NH2) in the presence of different buffers (Tris, BES, cacodylate, phosphate, and citrate) at the same pH (7.15) and different concentrations (10, 50, and 100 mM). We find that BSA adsorption is buffer specific, with the adsorbed amount of BSA being 4.4 times higher in the presence of 100 mM Tris (184 ± 3 mg/g) than for 100 mM citrate (42 ± 2 mg/g). That is a considerable difference that cannot be explained by conventional theories. The results become clearer if the interaction energies between BSA and MSN-NH2, considering the electric double layer (EEDL) and the van der Waals (EvdW) terms, are evaluated. The buffer specific PC derives from buffer specific zeta potentials that, for MSN-NH2, are positive with Tris and negative with citrate buffers. A reversed sign of zeta potentials can be obtained by considering polarizability-dependent dispersion forces acting together with electrostatics to give the buffer specific outcome. These results are relevant not only to our understanding of the formation of the PC but may also apply to other bio- and nanosystems in biological media.

4.
Dalton Trans ; 53(34): 14171-14181, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39044548

RESUMEN

In this work, bovine serum albumin (BSA) and Aspergillus sp. laccase (LC) were encapsulated in situ within two lanthanide-based MOFs (TbBTC and GdBTC) through a green one-pot synthesis (almost neutral aqueous solution, T = 25 °C, and atmospheric pressure) in about 1 h. Pristine MOFs and protein-encapsulated MOFs were characterized through wide angle X-ray scattering, scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared and Raman spectroscopies. The location of immobilized BSA molecules, used as a model protein, was investigated through small angle X-ray scattering. BSA occurs both on the inner and on the outer surface of the MOFs. LC@TbBTC, and LC@GdBTC samples were also characterized in terms of specific activity, kinetic parameters, and storage stability both in water and acetate buffer. The specific activity of LC@TbBTC was almost twice that of LC@GdBTC (10.8 µmol min-1 mg-1vs. 6.6 µmol min-1 mg-1). Both biocatalysts showed similar storage stabilities retaining ∼60% of their initial activity after 7 days and ∼20% after 21 days. LC@TbBTC dispersed in acetate buffer exhibited a higher storage stability than LC@GdBTC. Additionally, terbium-based MOFs showed interesting luminescent properties. Together, these findings suggest that TbBTC and GdBTC are promising supports for the in situ immobilization of proteins and enzymes.


Asunto(s)
Gadolinio , Estructuras Metalorgánicas , Albúmina Sérica Bovina , Albúmina Sérica Bovina/química , Estructuras Metalorgánicas/química , Gadolinio/química , Lacasa/química , Lacasa/metabolismo , Terbio/química , Aspergillus/enzimología , Tecnología Química Verde , Bovinos , Animales , Elementos de la Serie de los Lantanoides/química
5.
Anal Chim Acta ; 1287: 342087, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38182342

RESUMEN

In this study, a fully-featured electrochemiluminescence (ECL) sensing platform based on a multichannel closed bipolar system (closed-BP, C-BP) for the determination of caffeic acid (CA) was successfully developed. The system comprises three individual reservoirs connected to each other by two pairs of gold rods as bipolar electrodes. Moreover, a single pair of gold rods functions as the driving electrodes. Due to configuration consisting of three channels and double-bipolar electrodes, the detection of CA was accomplished in two oxidation and reduction pathways within a single device. Firstly, through close observation of the reactions occurring within the device and utilizing a universal pH indicator and bipolar electrodes, a precise mechanism for the current bipolar systems was initially proposed. Then, the concentration of CA was monitored in the reporting chamber through the following ECL intensities resulting from luminol oxidation and H2O2. The monitoring process was performed using both a photomultiplier tube (PMT) and a digital camera. In the process of analyte oxidation, the PMT and visual (camera)-based detection exhibited a linear response from 5 µmol L-1 to 700 µmol L-1 (limit of detection (LOD) 1.2 µmol L-1) and 50 µmol L-1 to 600 µmol L-1 (LOD 14.8 µmol L-1), respectively. In the analyte reduction pathway, the respective values were 30 µmol L-1 to 450 µmol L-1 (LOD 8.6 µmol L-1) and 55 µmol L-1 to 400 µmol L-1 (LOD 21.2 µmol L-1), for the PMT and visual-based detection, respectively. Our experiments have demonstrated the practical application of the sensor array for efficient and high-performance analysis. This innovative design holds significant potential for diverse fields and paves the way for the development of a user-friendly device.

6.
Nanomaterials (Basel) ; 13(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38132987

RESUMEN

The emergence of SARS-CoV-2 variants requires close monitoring to prevent the reoccurrence of a new pandemic in the near future. The Omicron variant, in particular, is one of the fastest-spreading viruses, showing a high ability to infect people and evade neutralization by antibodies elicited upon infection or vaccination. Therefore, the search for broad-spectrum antivirals that can inhibit the infectious capacity of SARS-CoV-2 is still the focus of intense research. In the present work, hyperbranched poly-L-lysine nanopolymers, which have shown an excellent ability to block the original strain of SARS-CoV-2 infection, were modified with L-arginine. A thermal reaction at 240 °C catalyzed by boric acid yielded Lys-Arg hyperbranched nanopolymers. The ability of these nanopolymers to inhibit viral replication were assessed for the original, Delta, and Omicron strains of SARS-CoV-2 together with their cytotoxicity. A reliable indication of the safety profile and effectiveness of the various polymeric compositions in inhibiting or suppressing viral infection was obtained by the evaluation of the therapeutic index in an in vitro prevention model. The hyperbranched L-arginine-modified nanopolymers exhibited a twelve-fold greater therapeutic index when tested with the original strain. The nanopolymers could also effectively limit the replication of the Omicron strain in a cell culture.

7.
Colloids Surf B Biointerfaces ; 226: 113311, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37060651

RESUMEN

Laccase from Aspergillus sp. (LC) was immobilized on functionalized silica hierarchical (microporous-macroporous) MFI zeolite (ZMFI). The obtained immobilized biocatalyst (LC#ZMFI) was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (ATR-FTIR), N2 adsorption/desorption isotherms, solid-state NMR spectroscopy and thermogravimetric analysis (TGA) confirming the chemical anchoring of the enzyme to the zeolitic support. The optimal pH, kinetic parameters (KM and Vmax), specific activity, as well as both storage and operational stability of LC#ZMFI were determined. The LC#ZMFI KM and Vmax values amount to 10.3 µM and 0.74 µmol·mg-1 min-1, respectively. The dependence of specific activity on the pH for free and immobilized LC was investigated in the pH range of 2-7, The highest specific activity was obtained at pH = 3 for both free LC and LC#ZMFI. LC#ZMFI retained up to 50 % and 30 % of its original activity after storage of 21 and 30 days, respectively. Immobilization of laccase on hierarchical silica MFI zeolite allows to carry out the reaction under acidic pH values without affecting the support structure.


Asunto(s)
Enzimas Inmovilizadas , Zeolitas , Enzimas Inmovilizadas/química , Lacasa/metabolismo , Dióxido de Silicio/química , Temperatura , Aspergillus/metabolismo , Concentración de Iones de Hidrógeno , Estabilidad de Enzimas
8.
J Colloid Interface Sci ; 641: 685-694, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36965340

RESUMEN

The location and the conformational changes of proteins/enzymes immobilized within Metal Organic Frameworks (MOFs) are still poorly investigated and understood. Bovine serum albumin (BSA), used as a model protein, was immobilized within two different zeolitic imidazolate frameworks (ZIF-zni and ZIF-8). Pristine ZIFs and BSA@ZIFs were characterized by X-ray diffraction, small-angle X-ray scattering, scanning electron microscopy, confocal laser scanning microscopy, thermogravimetric analysis, micro-FTIR and confocal Raman spectroscopy to characterize MOFs structure and the protein location in the materials. Moreover, the secondary structure and conformation changes of BSA after immobilization on both ZIFs were studied with FTIR. BSA is located both in the inner and on the outer surface of MOFs, forming domains that span from the micro- to the nanoscale. BSA crystallinity (ß-sheets + α-helices) increases up to 25 % and 40 % due to immobilization within ZIF-zni and ZIF-8, respectively, with a consequent reduction of ß-turns.


Asunto(s)
Estructuras Metalorgánicas , Zeolitas , Albúmina Sérica Bovina , Zeolitas/química , Imidazoles/química , Estructuras Metalorgánicas/química , Conformación Molecular
9.
Colloids Surf B Biointerfaces ; 223: 113187, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36739672

RESUMEN

Knowledge of DNA - lipid layer interactions is key for the development of biosensors, synthetic nanopores, scaffolds, and gene-delivery systems. These interactions are strongly affected by the ionic composition of the solvent. We have combined quartz crystal microbalance (QCM) and ellipsometry measurements to reveal how pH, buffers and alkali metal chloride salts affect the interaction of DNA with lipid bilayers (DOTAP/DOPC 30:70 in moles). We found that the thickness of the DNA layer adsorbed onto the lipid bilayer decreased in the order citrate > phosphate > Tris > HEPES. The effect of cations on the thickness of the DNA layer decreased in the order (K+ > Na+ > Cs+ ∼ Li+). Rationalization of the experimental results requires that adsorption, due to cation specific charge screening, is driven by the simultaneous action of two mechanisms namely, the law of matching water affinities for kosmotropes (Li+) and ion dispersion forces for chaotropes (Cs+). The outcome of these two opposing mechanisms is a "bell-shaped" specific cations sequence. Moreover, a superimposed buffer specificity, which goes beyond the simple effect of pH regulation, further modulated cation specificity. In summary, DNA-lipid bilayer interactions are maximized if citrate buffer (50 mM, pH 7.4) and KCl (100 mM) are used.


Asunto(s)
Cloruros , Membrana Dobles de Lípidos , Membrana Dobles de Lípidos/química , Cationes/química , Sodio , ADN
10.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36614260

RESUMEN

Due to their unique structure, poly(amidoamine) (PAMAM) dendrimers can bind active ingredients in two ways: inside the structure or on their surface. The location of drug molecules significantly impacts the kinetics of active substance release and the mechanism of internalization into the cell. This study focuses on the effect of the protonation degree of the G4PAMAM dendrimer and the anticancer drug 5-fluorouracil (5FU) on the efficiency of complex formation. The most favorable conditions for constructing the G4PAMAM-5FU complex are a low degree of protonation of the dendrimer molecule with the drug simultaneously present in a deprotonated form. The fluorine components in the XPS spectra confirm the formation of the stable complex. Through SAXS and DLS methods, a decrease in the dendrimer's molecular size resulting from protonation changes at alkaline conditions was demonstrated. The gradual closure of the dendrimer structure observed at high pH values makes it difficult for the 5FU molecules to migrate to the interior of the support structure, thereby promoting drug immobilization on the surface. The 1H NMR and DOSY spectra indicate that electrostatic interactions determine the complex formation process. Through MD simulations, the localization profile and the number of 5FU molecules forming the complex were visualized on an atomic scale.


Asunto(s)
Dendrímeros , Fluorouracilo , Dendrímeros/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
11.
J Colloid Interface Sci ; 630(Pt B): 193-201, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36327722

RESUMEN

The specific effects of salts (strong electrolytes) on biomolecular properties have been investigated for more than a century. By contrast, the specific role of pH buffers (weak electrolytes and their salts) has usually been ignored. Here, specific buffer effects on DNA thermal stability were evaluated by measuring the melting curve of calf thymus DNA through UV-vis spectroscopy. The study was carried out using phosphate, Tris, citrate and cacodylate buffers at fixed pH 7.4 at concentrations varying systematically in the range 1-600 mM. DNA stability increases with buffer concentration and is influenced specifically by buffer type. To interpret empirical data, a theoretical model was applied with parameters quantifying the impact of buffer on the DNA backbone charge. Comparing the buffer effects via buffer ionic strength rather than buffer concentration, we find that the buffers stabilize DNA in the order Tris > cacodylate > phosphate > citrate.


Asunto(s)
Ácido Cacodílico , Sales (Química) , Tampones (Química) , Ácido Cacodílico/química , ADN/química , Electrólitos , Fosfatos/química , Citratos , Concentración de Iones de Hidrógeno
12.
Colloids Surf B Biointerfaces ; 218: 112726, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35914467

RESUMEN

Biointerfaces are significantly affected by electrolytes according to the Hofmeister series. This work reports a systematic investigation on the effect of different metal chlorides, sodium and potassium bromides, iodides and thiocyanates, on the ESI/MS spectra of bovine serum albumin (BSA) in aqueous solution at pH = 2.7. The concentration of each salt was varied to maximize the quality of the ESI/MS spectrum, in terms of peak intensity and bell-shaped profile. The ESI/MS spectra of BSA in the absence and in the presence of salts showed a main protein pattern characterized by the expected mass of 66.5 kDa, except the case of BSA/RbCl (mass 65.3 kDa). In all systems we observed an additional pattern, characterized by at least three peaks with low intensity, whose deconvolution led to suggest the formation of a BSA fragment with a mass of 19.2 kDa. Only NaCl increased the intensity of the peaks of the main BSA pattern, while minimizing that of the fragment. NaCl addition seems to play a crucial role in stabilizing the BSA ionized interface against hydrolysis of peptide bonds, through different synergistic mechanisms. To quantify the observed specific electrolyte effects, two "Hofmeister" parameters (Hs and Ps) are proposed. They are obtained using the ratio of (BSA-Salt)/BSA peak intensities for both the BSA main pattern and for its fragment. SYNOPSIS: NaCl stabilizes BSA ion and almost prevents fragmentation due to denaturing pH.


Asunto(s)
Albúmina Sérica Bovina , Espectrometría de Masa por Ionización de Electrospray , Bromuros , Cloruros , Electrólitos/química , Yoduros , Péptidos , Potasio , Sales (Química) , Albúmina Sérica Bovina/química , Sodio , Cloruro de Sodio , Espectrometría de Masa por Ionización de Electrospray/métodos , Tiocianatos
13.
Dalton Trans ; 51(32): 12271-12281, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35899774

RESUMEN

Silica-based mesoporous materials have received growing attention in metal recovery from industrial processes, although, in general, the adsorption of metal ions by silanols is rather poor. Nevertheless, a great improvement of metal ion removal from aqueous solutions can be achieved by grafting metal-chelators on the particles' surface. Combining the metal-chelating properties of organic ligands with the high surface area of mesoporous silica particles makes these hybrid nanostructured materials a new horizon in metal recovery, sensing and controlled storage of metal ions in industrial and mining processes. Here, the 2,8-dithia-5-aza-2,6-pyridinophane (L) macrocycle was grafted on SBA-15 mesoporous silica to obtain the SBA-L mesoporous adsorbent for the removal and controlled recovery of Cd2+ and Cu2+ ions from aqueous solution in a broad pH range (4-11). By grafting about 0.3 mmol g-1 of L on SBA-15 a maximum loading capacity of 20.9 mg g-1 and 31.8 mg g-1 was obtained for Cu2+ and Cd2+, respectively. The adsorption kinetics can be described with the pseudo-second order model, while the adsorption isotherm (298 K) followed the Langmuir model. The latter, together with potentiometric studies, suggests that the adsorption mechanism is based on metal chelation by the grafted macrocycle. In summary, SBA-L is an effective copper(II) and cadmium(II) chelator for possible applications where metal removal, storage and recovery are of basic importance.

14.
J Inorg Biochem ; 234: 111872, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35653955

RESUMEN

We examine Hofmeister specific ion effects of electrolytes added to protein solution under conditions minimizing electrostatic attraction between cations and positively charged protein. Hemoglobin (Hb) in aqueous solution at the denaturing pH = 2.7 is investigated in the presence of several metal chlorides, along with sodium and potassium bromides, iodides and thiocyanates, using electrospray ionization mass spectrometry (ESI-MS). Salt concentration was varied to maximize peak intensity and bell-shaped profile in the ESI-MS spectrum. The α-chain of myoglobin is identified as the main pattern of the ESI-MS spectra in all Hb-salt systems. Both peak intensity and quality of the bell-shaped profile of the protein spectrum decrease in the cation order: K+ > > Mg2+ > Li+ > > Na+ > Ca2+ ≈ Cs+ > Rb+ for Hb-Metal Chloride systems, and decrease in the anion order: Cl- > Br- > I- > SCN- for systems of both Hb-NaX and Hb-KX salts. To quantify salt addition effects two Hofmeister specific electrolyte parameters HS, and PS are proposed. HS is the mean (Hb-salt)/Hb peak intensity ratio, measured for the nine peaks used for ESI-MS spectra deconvolution, taken at the same m/z values of the Hb profile. PS is the ratio between HS standard deviation and HS, and provides a specific perturbation parameter measuring the loss of protein structure. These two Hofmeister parameters give clear evidence of the effects induced either by KCl, MgCl2 and LiCl that enhance protein peak intensity, or by NaBr, NaI, NaSCN and KSCN that induce the protein fragmentation, due to electrolyte-mediated dissociation.


Asunto(s)
Electrólitos , Espectrometría de Masa por Ionización de Electrospray , Cationes , Cloruros , Hemoglobinas , Metales , Mioglobina/química , Sodio/química , Cloruro de Sodio , Espectrometría de Masa por Ionización de Electrospray/métodos
15.
Int J Mol Sci ; 23(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35628232

RESUMEN

Aurivillius oxides ferroelectric layered materials are formed by bismuth oxide and pseu-do-perovskite layers. They have a good ionic conductivity, which is beneficial for various photo-catalyzed reactions. Here, we synthesized ultra-thin nanosheets of two different Aurivillius oxides, Bi2WO6 (BWO) and Bi2MoO6 (BMO), by using a hard-template process. All materials were characterized through XRD, TEM, FTIR, TGA/DSC, DLS/ELS, DRS, UV-Vis. Band gap material (Eg) and potential of the valence band (EVB) were calculated for BWO and BMO. In contrast to previous reports on the use of multi composite materials, a new procedure for photocatalytic efficient BMO nanosheets was developed. The procedure, with an additional step only, avoids the use of composite materials, improves crystal structure, and strongly reduces impurities. BWO and BMO were used as photocatalysts for the degradation of the water pollutant dye malachite green (MG). MG removal kinetics was fitted with Langmuir-Hinshelwood model obtaining a kinetic constant k = 7.81 × 10-2 min-1 for BWO and k = 9.27 × 10-2 min-1 for BMO. Photocatalytic dye degradation was highly effective, reaching 89% and 91% MG removal for BWO and BMO, respectively. A control experiment, carried out in the absence of light, allowed to quantify the contribution of adsorption to MG removal process. Adsorption contributed to MG removal by a 51% for BWO and only by a 19% for BMO, suggesting a different degradation mechanism for the two photocatalysts. The advanced MG degradation process due to BMO is likely caused by the high crystallinity of the material synthetized with the new procedure. Reuse tests demonstrated that both photocatalysts are highly active and stable reaching a MG removal up to 95% at the 10th reaction cycle. These results demonstrate that BMO nanosheets, synthesized with an easy additional step, achieved the best degradation performance, and can be successfully used for environmental remediation applications.


Asunto(s)
Óxidos , Colorantes de Rosanilina , Catálisis , Oxidación-Reducción , Óxidos/química
16.
Materials (Basel) ; 15(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35407731

RESUMEN

Bioimaging supported by nanoparticles requires low cost, highly emissive and photostable systems with low cytotoxicity. Carbon dots (C-dots) offer a possible solution, even if controlling their properties is not always straightforward, not to mention their potentially simple synthesis and the fact that they do not exhibit long-term photostability in general. In the present work, we synthesized two C-dots starting from citric acid and tris (hydroxymethyl)-aminomethane (tris) or arginine methyl ester dihydrochloride. Cellular uptake and bioimaging were tested in vitro using murine neuroblastoma and ovine fibroblast cells. The C-dots are highly biocompatible, and after 24 h of incubation with the cells, 100% viability was still observed. Furthermore, the C-dots synthesized using tris have an average dimension of 2 nm, a quantum yield of 37%, high photostability and a zeta potential (ζ) around -12 mV. These properties favor cellular uptake without damaging cells and allow for very effective bioimaging.

17.
Phys Chem Chem Phys ; 24(11): 6544-6551, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35260871

RESUMEN

Buffer solutions do not simply regulate pH, but also change the properties of protein molecules. The zeta potential of lysozyme varies significantly at the same buffer concentration, in the order Tris > phosphate > citrate, with citrate even inverting the zeta potential, usually positive at pH 7.15, to a negative value. This buffer-specific effect is a special case of the Hofmeister effect. Here we present a theoretical model of these buffer-specific effects using a Poisson-Boltzmann description of the buffer solution, modified to include dispersion forces of all ions interacting with the lysozyme surface. Dispersion coefficients are determined from quantum chemical polarizabilites calculated for each ion for tris, phosphate, and citrate buffer solutions. The lysozyme surface charge is controlled by charge regulation of carboxylate and amine sites of the component amino acids. The theoretical model satisfactorily reproduces experimental zeta potentials, including change of sign with citrate, when hydration of small cosmotropic ions (Na+, H+, OH-) is included.


Asunto(s)
Modelos Teóricos , Proteínas , Concentración de Iones de Hidrógeno , Iones/química , Proteínas/química
18.
Colloids Surf B Biointerfaces ; 208: 112147, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34634655

RESUMEN

Laccase from Aspergillus sp. (LC) was immobilized within Fe-BTC and ZIF-zni metal organic frameworks through a one-pot synthesis carried out under mild conditions (room temperature and aqueous solution). The Fe-BTC, ZIF-zni MOFs, and the LC@Fe-BTC, LC@ZIF-zni immobilized LC samples were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The kinetic parameters (KM and Vmax) and the specific activity of the free and immobilized laccase were determined. Immobilized LCs resulted in a lower specific activity compared with that of the free LC (7.7 µmol min-1 mg-1). However, LC@ZIF-zni was almost 10 times more active than LC@Fe-BTC (1.32 µmol min-1 mg-1 vs 0.17 µmol min-1 mg-1) and only 5.8 times less active than free LC. The effect of enzyme loading showed that LC@Fe-BTC had an optimal loading of 45.2 mg g-1, at higher enzyme loadings the specific activity decreased. In contrast, the specific activity of LC@ZIF-zni increased linearly over the loading range investigated. The storage stability of LC@Fe-BTC was low with a significant decrease in activity after 5 days, while LC@ZIF retained up to 50% of its original activity after 30 days storage. The difference in activity and stability between LC@Fe-BTC and LC@ZIF-zni is likely due to release of Fe3+ and the low stability of Fe-BTC MOF. Together, these results indicate that ZIF-zni is a superior support for the immobilization of laccase.


Asunto(s)
Aspergillus , Enzimas Inmovilizadas , Lacasa , Estructuras Metalorgánicas , Aspergillus/metabolismo , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Cinética , Lacasa/metabolismo
19.
Nanoscale ; 13(39): 16465-16476, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34553728

RESUMEN

The coronavirus pandemic (COVID-19) had spread rapidly since December 2019, when it was first identified in Wuhan, China. As of April 2021, more than 130 million cases have been confirmed, with more than 3 million deaths, making it one of the deadliest pandemics in history. Different approaches must be put in place to confront a new pandemic: community-based behaviours (i.e., isolation and social distancing), antiviral treatments, and vaccines. Although behaviour-based actions have produced significant benefits and several efficacious vaccines are now available, there is still an urgent need for treatment options. Remdesivir represents the first antiviral drug approved by the Food and Drug Administration for COVID-19 but has several limitations in terms of safety and treatment benefits. There is still a strong request for other effective, safe, and broad-spectrum antiviral systems in light of future emergent coronaviruses. Here, we describe a polymeric nanomaterial derived from L-lysine, with an antiviral activity against SARS-CoV-2 associated with a good safety profile in vitro. Nanoparticles of hyperbranched polylysine, synthesized by L-lysine's thermal polymerization catalyzed by boric acid, effectively inhibit the SARS-CoV-2 replication. The virucidal activity is associated with the charge and dimension of the nanomaterial, favouring the electrostatic interaction with the viral surface being only slightly larger than the virions' dimensions. Low-cost production and easiness of synthesis strongly support the further development of such innovative nanomaterials as a tool for potential treatments of COVID-19 and, in general, as broad-spectrum antivirals.


Asunto(s)
Antivirales , COVID-19 , Antivirales/farmacología , Humanos , Pandemias , Polilisina , SARS-CoV-2
20.
Int J Mol Sci ; 22(14)2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-34299286

RESUMEN

Mesoporous silica nanoparticles (MSN) were synthesised and functionalised with triethylenetetramine (MSN-TETA). The samples were fully characterised (transmission electron microscopy, small angle X-ray scattering, Fourier transform infrared spectroscopy, thermogravimetric analysis, zeta potential and nitrogen adsorption/desorption isotherms) and used as carriers for the adsorption of the antimicrobial drug sulphamethizole (SMZ). SMZ loading, quantified by UV-Vis spectroscopy, was higher on MSN-TETA (345.8 mg g-1) compared with bare MSN (215.4 mg g-1) even in the presence of a lower surface area (671 vs. 942 m2 g-1). The kinetics of SMZ adsorption on MSN and MSN-TETA followed a pseudo-second-order model. The adsorption isotherm is described better by a Langmuir model rather than a Temkin or Freundlich model. Release kinetics showed a burst release of SMZ from bare MSN samples (k1 = 136 h-1) in contrast to a slower release found with MSN-TETA (k1 = 3.04 h-1), suggesting attractive intermolecular interactions slow down SMZ release from MSN-TETA. In summary, the MSN surface area did not influence SMZ adsorption and release. On the contrary, the design of an effective drug delivery system must consider the intermolecular interactions between the adsorbent and the adsorbate.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Dióxido de Silicio/química , Sulfametizol/metabolismo , Trientina/química , Adsorción , Liberación de Fármacos , Cinética , Microscopía Electrónica de Transmisión/métodos , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Sulfametizol/química , Difracción de Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA