Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Biomembr ; 1864(3): 183825, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34871574

RESUMEN

The evolutionary conserved YidC is a unique dual-function membrane protein that adopts insertase and chaperone conformations. The N-terminal helix of Escherichia coli YidC functions as an uncleaved signal sequence and is important for membrane insertion and interaction with the Sec translocon. Here, we report the first crystal structure of Thermotoga maritima YidC (TmYidC) including the N-terminal amphipathic helix (N-AH) (PDB ID: 6Y86). Molecular dynamics simulations show that N-AH lies on the periplasmic side of the membrane bilayer forming an angle of about 15° with the membrane surface. Our functional studies suggest a role of N-AH for the species-specific interaction with the Sec translocon. The reconstitution data and the superimposition of TmYidC with known YidC structures suggest an active insertase conformation for YidC. Molecular dynamics (MD) simulations of TmYidC provide evidence that N-AH acts as a membrane recognition helix for the YidC insertase and highlight the flexibility of the C1 region underlining its ability to switch between insertase and chaperone conformations. A structure-based model is proposed to rationalize how YidC performs the insertase and chaperone functions by re-positioning of N-AH and the other structural elements.


Asunto(s)
Proteínas Bacterianas/química , Membrana Celular/metabolismo , Proteínas de Transporte de Membrana/química , Simulación de Dinámica Molecular , Thermotoga maritima/metabolismo , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Proteínas de Transporte de Membrana/metabolismo , Conformación Proteica
2.
Biotechnol Bioeng ; 117(11): 3413-3421, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32706389

RESUMEN

Protein A capture chromatography is a critical unit operation in the clearance of host cell protein (HCP) impurities in monoclonal antibody (mAb) purification processes. Though one of the most effective purification steps, variable levels of protein impurities are often observed in the eluate. Coelution of HCP impurities is suggested to be strongly affected by the presence of chromatin complexes (Gagnon et al., 2014; Koehler et al., 2019). We investigated the effect of removal of DNA complex and HCP reduction pre-Protein A on the HCP clearance performance of the Protein A capture step itself. We found that only reduction of DNA in the Protein A load consistently lowered HCP in the Protein A eluate. Reduction of HCP in the Protein A load stream did not produce a significant increase in the chromatography HCP clearance performance. These results are consistent across three different biosimilar therapeutic mAbs expressed by the same Chinese hamster ovary (CHO) cell line (i.e., CHOBC ® of Polpharma Biologics). This result demonstrates that optimization of the mAb purification process utilizing Protein A as the primary capture step depends primarily on being able to effectively clear DNA and associated complexes early in the process, rather than trying to incorporate HCP reduction at the harvest cell culture fluid.


Asunto(s)
Cromatina/aislamiento & purificación , Cromatografía de Afinidad/métodos , Proteínas/aislamiento & purificación , Proteína Estafilocócica A , Animales , Anticuerpos Monoclonales , Células CHO , Cromatina/química , Cricetulus , ADN/química , ADN/aislamiento & purificación , Proteínas/química , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo
3.
Bioconjug Chem ; 27(1): 36-41, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26619248

RESUMEN

Photosynthesis is Nature's major process for converting solar into chemical energy. One of the key players in this process is the multiprotein complex photosystem I (PSI) that through absorption of incident photons enables electron transfer, which makes this protein attractive for applications in bioinspired photoactive hybrid materials. However, the efficiency of PSI is still limited by its poor absorption in the green part of the solar spectrum. Inspired by the existence of natural phycobilisome light-harvesting antennae, we have widened the absorption spectrum of PSI by covalent attachment of synthetic dyes to the protein backbone. Steady-state and time-resolved photoluminescence reveal that energy transfer occurs from these dyes to PSI. It is shown by oxygen-consumption measurements that subsequent charge generation is substantially enhanced under broad and narrow band excitation. Ultimately, surface photovoltage (SPV) experiments prove the enhanced activity of dye-modified PSI even in the solid state.


Asunto(s)
Colorantes Fluorescentes/química , Compuestos Heterocíclicos de 4 o más Anillos/química , Complejo de Proteína del Fotosistema I/química , Cianobacterias/química , Transferencia de Energía , Transferencia Resonante de Energía de Fluorescencia , Concentración de Iones de Hidrógeno , Luminiscencia , Lisina/química , Microscopía Electrónica de Transmisión , Oxígeno/química , Oxígeno/metabolismo
4.
Adv Mater ; 26(28): 4863-9, 2014 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-24862686

RESUMEN

The large multiprotein complex, photosystem I (PSI), which is at the heart of light-dependent reactions in photosynthesis, is integrated as the active component in a solid-state organic photovoltaic cell. These experiments demonstrate that photoactive megadalton protein complexes are compatible with solution processing of organic-semiconductor materials and operate in a dry non-natural environment that is very different from the biological membrane.


Asunto(s)
Fuentes de Energía Bioeléctrica , Electrodos , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/efectos de la radiación , Semiconductores , Energía Solar , Transductores , Transferencia de Energía/efectos de la radiación , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales
5.
Biol Chem ; 393(11): 1279-90, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23111630

RESUMEN

The members of the YidC/Oxa1/Alb3 protein family are evolutionary conserved in all three domains of life. They facilitate the insertion of membrane proteins into bacterial, mitochondrial, and thylakoid membranes and have been implicated in membrane protein folding and complex formation. The major classes of substrates are small hydrophobic subunits of large energy-transducing complexes involved in respiration and light capturing. All YidC-like proteins share a conserved membrane region, whereas the N- and C-terminal regions are diverse and fulfill accessory functions in protein targeting.


Asunto(s)
Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Secuencia Conservada , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Pliegue de Proteína
6.
Proteomics ; 11(2): 270-82, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21204254

RESUMEN

Members of the evolutionary conserved Oxa1/Alb3/YidC family have been shown to play an important role in membrane protein insertion, folding and/or assembly. Bacillus subtilis contains two YidC-like proteins, denoted as SpoIIIJ and YqjG. SpoIIIJ and YqjG are largely exchangeable, but SpoIIIJ is essential for spore formation and YqjG cannot complement this activity. To elucidate the role of YqjG, we determined the membrane proteome and functional aspects of B. subtilis cells devoid of SpoIIIJ, YqjG or both. The data show that SpoIIIJ and YqjG have complementary functions in membrane protein insertion and assembly. The reduced levels of F(1)F(O) ATP synthase in cells devoid of both SpoIIIJ and YqjG are due to a defective assembly of the F(1)-domain onto the F(0)-domain. Importantly, for the first time, a specific function is demonstrated for YqjG in genetic competence development.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteoma/metabolismo , Proteínas Bacterianas/genética , Eliminación de Gen , Proteínas de la Membrana/genética , Proteoma/genética
7.
PLoS One ; 5(12): e14209, 2010 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21151985

RESUMEN

BACKGROUND: Ecs is an ATP-binding cassette (ABC) transporter present in aerobic and facultative anaerobic gram-positive Firmicutes. Inactivation of Bacillus subtilis Ecs causes pleiotropic changes in the bacterial phenotype including inhibition of intramembrane proteolysis. The molecule(s) transported by Ecs is (are) still unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study we mutated the ecsAB operon in two Staphylococcus aureus strains, Newman and LS-1. Phenotypic and functional characterization of these Ecs deficient mutants revealed a defect in growth, increased autolysis and lysostaphin sensitivity, altered composition of cell wall proteins including the precursor form of staphylokinase and an altered bacterial surface texture. DNA microarray analysis indicated that the Ecs deficiency changed expression of the virulence factor regulator protein Rot accompanied by differential expression of membrane transport proteins, particularly ABC transporters and phosphate-specific transport systems, protein A, adhesins and capsular polysaccharide biosynthesis proteins. Virulence of the ecs mutants was studied in a mouse model of hematogenous S. aureus infection. Mice inoculated with the ecs mutant strains developed markedly milder infections than those inoculated with the wild-type strains and had consequently lower mortality, less weight loss, milder arthritis and decreased persistence of staphylococci in the kidneys. The ecs mutants had higher susceptibility to ribosomal antibiotics and plant alkaloids chelerythrine and sanguinarine. CONCLUSIONS/SIGNIFICANCE: Our results show that Ecs is essential for staphylococcal virulence and antimicrobial resistance probably since the transport function of Ecs is essential for the normal structure and function of the cell wall. Thus targeting Ecs may be a new approach in combating staphylococcal infection.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Pared Celular/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad , Animales , Autólisis , Benzofenantridinas/farmacología , Transporte Biológico , Femenino , Intrones , Isoquinolinas/farmacología , Lisostafina/metabolismo , Ratones , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Ribosomas/metabolismo , Infecciones Estafilocócicas/metabolismo , Virulencia
8.
J Bacteriol ; 191(21): 6749-57, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19717609

RESUMEN

In all domains of life Oxa1p-like proteins are involved in membrane protein biogenesis. Bacillus subtilis, a model organism for gram-positive bacteria, contains two Oxa1p homologs: SpoIIIJ and YqjG. These molecules appear to be mutually exchangeable, although SpoIIIJ is specifically required for spore formation. SpoIIIJ and YqjG have been implicated in a posttranslocational stage of protein secretion. Here we show that the expression of either spoIIIJ or yqjG functionally compensates for the defects in membrane insertion due to YidC depletion in Escherichia coli. Both SpoIIIJ and YqjG complement the function of YidC in SecYEG-dependent and -independent membrane insertion of subunits of the cytochrome o oxidase and F(1)F(o) ATP synthase complexes. Furthermore, SpoIIIJ and YqjG facilitate membrane insertion of F(1)F(o) ATP synthase subunit c from both E. coli and B. subtilis into inner membrane vesicles of E. coli. When isolated from B. subtilis cells, SpoIIIJ and YqjG were found to be associated with the entire F(1)F(o) ATP synthase complex, suggesting that they have a role late in the membrane assembly process. These data demonstrate that the Bacillus Oxa1p homologs have a role in membrane protein biogenesis rather than in protein secretion.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Adenosina Trifosfatasas/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Complejo IV de Transporte de Electrones/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Prueba de Complementación Genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Estrés Fisiológico/fisiología
9.
Arch Microbiol ; 190(3): 379-94, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18584152

RESUMEN

Ignicoccus hospitalis, a hyperthermophilic, chemolithoautotrophic Crenarchaeon, is the host of Nanoarchaeum equitans. Together, they form an intimate association, the first among Archaea. Membranes are of fundamental importance for the interaction of I. hospitalis and N. equitans, as they harbour the proteins necessary for the transport of macromolecules like lipids, amino acids, and cofactors between these organisms. Here, we investigated the protein inventory of I. hospitalis cells, and were able to identify 20 proteins in total. Experimental evidence and predictions let us conclude that 11 are soluble cytosolic proteins, eight membrane or membrane-associated proteins, and a single one extracellular. The quantitatively dominating proteins in the cytoplasm (peroxiredoxin; thermosome) antagonize oxidative and temperature stress which I. hospitalis cells are exposed to at optimal growth conditions. Three abundant membrane protein complexes are found: the major protein of the outer membrane, which might protect the cell against the hostile environment, forms oligomeric complexes with pores of unknown selectivity; two other complexes of the cytoplasmic membrane, the hydrogenase and the ATP synthase, play a key role in energy production and conversion.


Asunto(s)
Proteínas Arqueales/química , Desulfurococcaceae/química , Proteoma/química , Biología Computacional , Citosol/química , Electroforesis en Gel de Poliacrilamida , Proteínas de la Membrana/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
10.
Microb Cell Fact ; 7: 10, 2008 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-18394159

RESUMEN

BACKGROUND: The Gram-positive bacterium Bacillus subtilis is an important producer of high quality industrial enzymes and a few eukaryotic proteins. Most of these proteins are secreted into the growth medium, but successful examples of cytoplasmic protein production are also known. Therefore, one may anticipate that the high protein production potential of B. subtilis can be exploited for protein complexes and membrane proteins to facilitate their functional and structural analysis. The high quality of proteins produced with B. subtilis results from the action of cellular quality control systems that efficiently remove misfolded or incompletely synthesized proteins. Paradoxically, cellular quality control systems also represent bottlenecks for the production of various heterologous proteins at significant concentrations. CONCLUSION: While inactivation of quality control systems has the potential to improve protein production yields, this could be achieved at the expense of product quality. Mechanisms underlying degradation of secretory proteins are nowadays well understood and often controllable. It will therefore be a major challenge for future research to identify and modulate quality control systems of B. subtilis that limit the production of high quality protein complexes and membrane proteins, and to enhance those systems that facilitate assembly of these proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA