Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 9: 1046412, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406263

RESUMEN

Carbon monoxide has been recognized relatively recently as signaling molecule, and only very few dedicated natural CO sensor proteins have been identified so far. These include in particular heme-based transcription factors: the bacterial sensor proteins CooA and RcoM. In these 6-coordinated systems, exchange between an internal protein residue and CO as a heme ligand in the sensor domain affects the properties of the DNA-binding domain. Using light to dissociate heme-ligand bonds can in principle initiate this switching process. We review the efforts to use this method to investigate early processes in ligand switching and signaling, with an emphasis on the CO-"trappingË® properties of the heme cavity. These features are unusual for most heme proteins, but common for heme-based CO sensors.

2.
Biochim Biophys Acta Bioenerg ; 1862(5): 148385, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33516769

RESUMEN

Cytochrome bc1 complexes are energy-transducing enzymes and key components of respiratory electron chains. They contain Rieske 2Fe2S proteins that absorb very weakly in the visible absorption region compared to the heme cofactors of the cytochromes, but are known to yield photoproducts. Here, the photoreactions of isolated Rieske proteins from the hyperthermophilic bacterium Aquifex aeolicus are studied in two redox states using ultrafast transient fluorescence and absorption spectroscopy. We provide evidence, for the first time in iron­sulfur proteins, of very weak fluorescence of the excited state, in the oxidized as well as the reduced state. The excited states of the oxidized and reduced forms decay in 1.5 ps and 30 ps, respectively. In both cases they give rise to product states with lifetimes beyond 1 ns, reflecting photo-reduction of oxidized centers as well as photo-oxidation of reduced centers. Potential reaction partners are discussed and studied using site-directed mutagenesis. For the reduced state, a nearby disulfide bridge is suggested as an electron acceptor. The resulting photoproducts in either state may play a role in photoactivation processes.


Asunto(s)
Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/metabolismo , Fluorescencia , Hierro/metabolismo , Fotoquímica , Azufre/metabolismo , Aquifex/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hierro/química , Oxidación-Reducción , Azufre/química
3.
Biochemistry ; 58(39): 4028-4034, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31502443

RESUMEN

The heme-based and CO-responsive RcoM transcriptional regulators from Burkholderia xenovorans are known to display an extremely high affinity for CO while being insensitive to O2. We have quantitatively characterized the heme-CO interaction in full-length RcoM-2 and compared it with the isolated heme domain RcoMH-2 to establish the origin of these characteristics. Whereas the CO binding rates are similar to those of other heme-based sensor proteins, the dissociation rates are two to three orders of magnitude lower. The latter property is tuned by the yield of CO escape from the heme pocket after disruption of the heme-CO bond, as determined by ultrafast spectroscopy. For the full-length protein this yield is ∼0.5%, and for the isolated heme domain it is even lower, associated with correspondingly faster CO rebinding kinetics, leading to Kd values of 4 and 0.25 nM, respectively. These differences imply that the presence of the DNA-binding domain influences the ligand-binding properties of the heme domain, thus abolishing the observed quasi-irreversibility of CO binding to the isolated heme domain. RcoM-2 binds target DNA with high affinity (Kd < 2 nM) when CO is bound to the heme, and the presence of DNA also influences the heme-CO rebinding kinetics. The functional implications of our findings are discussed.


Asunto(s)
Proteínas Bacterianas/química , Monóxido de Carbono/metabolismo , Escherichia coli/metabolismo , Hemo/química , Hemoproteínas/metabolismo , ADN/metabolismo , Polarización de Fluorescencia , Cinética , Ligandos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas
4.
ChemMedChem ; 14(6): 645-662, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30702807

RESUMEN

Since the discovery of a flavin-dependent thymidylate synthase (ThyX or FDTS) that is absent in humans but crucial for DNA biosynthesis in a diverse group of pathogens, the enzyme has been pursued for the development of new antibacterial agents against Mycobacterium tuberculosis, the causative agent of the widespread infectious disease tuberculosis (TB). In response to a growing need for more effective anti-TB drugs, we have built upon our previous screening efforts and report herein an optimization campaign of a novel series of inhibitors with a unique inhibition profile. The inhibitors display competitive inhibition toward the methylene tetrahydrofolate cofactor of ThyX, enabling us to generate a model of the compounds bound to their target, thus offering insight into their structure-activity relationships.


Asunto(s)
Inhibidores Enzimáticos , Mycobacterium tuberculosis/efectos de los fármacos , Oxazinas , Timidilato Sintasa/antagonistas & inhibidores , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/enzimología , Oxazinas/síntesis química , Oxazinas/química , Oxazinas/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA