Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IEEE Trans Cybern ; PP2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264788

RESUMEN

This article investigates a novel neuro-adaptive barrier Lyapunov function (BLF)-based event-triggered preassigned finite-time consensus control with asymptotic tracking for the nonlinear multiagent systems. The proposed approach is designed to broaden the scope of application by considering the high-order nonstrict-feedback dynamics of each agent with dynamic uncertainties subject to external disturbances and nonaffine nonlinear faults. A neural network (NN) is employed to approximate the unknown nonlinear terms. By fusing the NNs and Butterworth low-pass filter technique, the issues arising from the nonaffine nonlinear fault are addressed. To save the communication resources, a novel dynamic event-triggered mechanism based on an enhanced switching threshold is suggested. Additionally, a novel concept called the preassigned finite-time performance function (PFTPF) is defined to improve the transient and steady-state performances as well as providing faster response. The key feature of the proposed adaptive BLF-based control based on the bound estimation method is the introduction of a smooth function with decreasing variable which not only ensures that all the signals remain bounded and the synchronization errors are restricted within the PFTPF but also guarantees that the tracking errors asymptotically converge to zero. Finally, an illustrative example is provided to verify the feasibility of the proposed control approach.

2.
Environ Res ; 238(Pt 1): 117087, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716390

RESUMEN

Hydrogels represent intricate three-dimensional polymeric structures, renowned for their compatibility with living systems and their ability to naturally degrade. These networks stand as promising and viable foundations for a range of biomedical uses. The practical feasibility of employing hydrogels in clinical trials has been well-demonstrated. Among the prevalent biomedical uses of hydrogels, a significant application arises in the context of wound healing. This intricate progression involves distinct phases of inflammation, proliferation, and remodeling, often triggered by trauma, skin injuries, and various diseases. Metabolic conditions like diabetes have the potential to give rise to persistent wounds, leading to delayed healing processes. This current review consolidates a collection of experiments focused on the utilization of hydrogels to expedite the recovery of wounds. Hydrogels have the capacity to improve the inflammatory conditions at the wound site, and they achieve this by diminishing levels of reactive oxygen species (ROS), thereby exhibiting antioxidant effects. Hydrogels have the potential to enhance the growth of fibroblasts and keratinocytes at the wound site. They also possess the capability to inhibit both Gram-positive and Gram-negative bacteria, effectively managing wounds infected by drug-resistant bacteria. Hydrogels can trigger angiogenesis and neovascularization processes, while also promoting the M2 polarization of macrophages, which in turn mitigates inflammation at the wound site. Intelligent and versatile hydrogels, encompassing features such as pH sensitivity, reactivity to reactive oxygen species (ROS), and responsiveness to light and temperature, have proven advantageous in expediting wound healing. Furthermore, hydrogels synthesized using environmentally friendly methods, characterized by high levels of biocompatibility and biodegradability, hold the potential for enhancing the wound healing process. Hydrogels can facilitate the controlled discharge of bioactive substances. More recently, there has been progress in the creation of conductive hydrogels, which, when subjected to electrical stimulation, contribute to the enhancement of wound healing. Diabetes mellitus, a metabolic disorder, leads to a slowdown in the wound healing process, often resulting in the formation of persistent wounds. Hydrogels have the capability to expedite the healing of diabetic wounds, facilitating the transition from the inflammatory phase to the proliferative stage. The current review sheds light on the biological functionalities of hydrogels, encompassing their role in modulating diverse mechanisms and cell types, including inflammation, oxidative stress, macrophages, and bacteriology. Additionally, this review emphasizes the significance of smart hydrogels with responsiveness to external stimuli, as well as conductive hydrogels for promoting wound healing. Lastly, the discussion delves into the advancement of environmentally friendly hydrogels with high biocompatibility, aimed at accelerating the wound healing process.


Asunto(s)
Diabetes Mellitus , Hidrogeles , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Especies Reactivas de Oxígeno , Antibacterianos/farmacología , Medicina de Precisión , Bacterias Gramnegativas , Bacterias Grampositivas , Cicatrización de Heridas , Inflamación
3.
Artículo en Inglés | MEDLINE | ID: mdl-37339030

RESUMEN

In this article, an adaptive neural containment control for a class of nonlinear multiagent systems considering actuator faults is introduced. By using the general approximation property of neural networks, a neuro-adaptive observer is designed to estimate unmeasured states. In addition, in order to reduce the computational burden, a novel event-triggered control law is designed. Furthermore, the finite-time performance function is presented to improve the transient and steady-state performance of the synchronization error. Utilizing the Lyapunov stability theory, it will be shown that the closed-loop system is cooperatively semiglobally uniformly ultimately bounded (CSGUUB), and the followers' outputs reach the convex hull constructed by the leaders. Moreover, it is shown that the containment errors are limited to the prescribed level in a finite time. Eventually, a simulation example is presented to corroborate the capability of the proposed scheme.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA