Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Occup Environ Med ; 65(9): 717-724, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37231645

RESUMEN

OBJECTIVE: The aim of the study is to study functional impairment due to indoor air-related symptoms and associated characteristics. METHODS: A questionnaire survey of a random sample of Finnish people aged 25 to 64 years. Analyses were done using multivariate multinomial logistic regression. RESULTS: A total of 23.1% reported indoor air-related symptoms, 1.8% severe functional impairment due to symptoms, 5.3% moderate, 11.1% mild, and 4.9% reported no impairment. Those with severe functional impairment showed the strongest associations with comorbid diseases, for example, asthma and irritable bowel syndrome, perceived sensitivities to several environmental factors, like chemicals, and likelihood of having symptoms in multiple organs, while those with no or little functional impairment showed weak or even inverse associations. Similar results emerged with severity of indoor air-related symptoms. CONCLUSIONS: Individuals with indoor air-related symptoms are a very heterogeneous group. This should be better considered in future research and clinical practice.


Asunto(s)
Contaminación del Aire Interior , Asma , Humanos , Contaminación del Aire Interior/análisis , Prevalencia , Asma/epidemiología , Encuestas y Cuestionarios , Modelos Logísticos
2.
Environ Microbiol ; 24(5): 2404-2420, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35049114

RESUMEN

Intensive aquaculture conditions expose fish to bacterial infections, leading to significant financial losses, extensive antibiotic use and risk of antibiotic resistance in target bacteria. Flavobacterium columnare causes columnaris disease in aquaculture worldwide. To develop a bacteriophage-based control of columnaris disease, we isolated and characterized 126 F. columnare strains and 63 phages against F. columnare from Finland and Sweden in 2017. Bacterial isolates were virulent on rainbow trout (Oncorhynchus mykiss) and fell into four previously described genetic groups A, C, E and G, with genetic groups C and E being the most virulent. Phage host range studied against a collection of 227 bacterial isolates (from 2013 to 2017) demonstrated modular infection patterns based on host genetic group. Phages infected contemporary and previously isolated bacterial hosts, but bacteria isolated most recently were generally resistant to previously isolated phages. Despite large differences in geographical origin, isolation year or host range of the phages, whole-genome sequencing of 56 phages showed high level of genetic similarity to previously isolated F. columnare phages (Ficleduovirus, Myoviridae). Altogether, this phage collection demonstrates a potential for use in phage therapy.


Asunto(s)
Bacteriófagos , Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Oncorhynchus mykiss , Animales , Acuicultura , Bacteriófagos/genética , Enfermedades de los Peces/microbiología , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Flavobacterium/genética , Oncorhynchus mykiss/microbiología , Prevalencia
3.
Antibiotics (Basel) ; 10(8)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34438964

RESUMEN

Viruses of bacteria, bacteriophages, specifically infect their bacterial hosts with minimal effects on the surrounding microbiota. They have the potential to be used in the prevention and treatment of bacterial infections, including in the field of food production. In aquaculture settings, disease-causing bacteria are often transmitted through the water body, providing several applications for phage-based targeting of pathogens, in the rearing environment, and in the fish. We tested delivery of phages by different methods (via baths, in phage-coated material, and via oral delivery in feed) to prevent and treat Flavobacterium columnare infections in rainbow trout fry using three phages (FCOV-S1, FCOV-F2, and FCL-2) and their hosts (FCO-S1, FCO-F2, and B185, respectively). Bath treatments given before bacterial infection and at the onset of the disease symptoms were the most efficient way to prevent F. columnare infections in rainbow trout, possibly due to the external nature of the disease. In a flow-through system, the presence of phage-coated plastic sheets delayed the onset of the disease. The oral administration of phages first increased disease progression, although total mortality was lower at the end of the experiment. When analysed for shelf-life, phage titers remained highest when maintained in bacterial culture media and in sterile lake water. Our results show that successful phage therapy treatment in the aquaculture setting requires optimisation of phage delivery methods in vivo.

4.
Appl Environ Microbiol ; 87(16): e0081221, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34106011

RESUMEN

Increasing problems with antibiotic resistance have directed interest toward phage therapy in the aquaculture industry. However, phage resistance evolving in target bacteria is considered a challenge. To investigate how phage resistance influences the fish pathogen Flavobacterium columnare, two wild-type bacterial isolates, FCO-F2 and FCO-F9, were exposed to phages (FCO-F2 to FCOV-F2, FCOV-F5, and FCOV-F25, and FCO-F9 to FCL-2, FCOV-F13, and FCOV-F45), and resulting phenotypic and genetic changes in bacteria were analyzed. Bacterial viability first decreased in the exposure cultures but started to increase after 1 to 2 days, along with a change in colony morphology from original rhizoid to rough, leading to 98% prevalence of the rough morphotype. Twenty-four isolates (including four isolates from no-phage treatments) were further characterized for phage resistance, antibiotic susceptibility, motility, adhesion, and biofilm formation, protease activity, whole-genome sequencing, and virulence in rainbow trout fry. The rough isolates arising in phage exposure were phage resistant with low virulence, whereas rhizoid isolates maintained phage susceptibility and high virulence. Gliding motility and protease activity were also related to the phage susceptibility. Observed mutations in phage-resistant isolates were mostly located in genes encoding the type IX secretion system, a component of the Bacteroidetes gliding motility machinery. However, not all phage-resistant isolates had mutations, indicating that phage resistance in F. columnare is a multifactorial process, including both genetic mutations and changes in gene expression. Phage resistance may not, however, be a challenge for development of phage therapy against F. columnare infections since phage resistance is associated with decreases in bacterial virulence. IMPORTANCE Phage resistance of infectious bacteria is a common phenomenon posing challenges for the development of phage therapy. Along with a growing world population and the need for increased food production, constantly intensifying animal farming has to face increasing problems of infectious diseases. Columnaris disease, caused by Flavobacterium columnare, is a worldwide threat for salmonid fry and juvenile farming. Without antibiotic treatments, infections can lead to 100% mortality in a fish stock. Phage therapy of columnaris disease would reduce the development of antibiotic-resistant bacteria and antibiotic loads by the aquaculture industry, but phage-resistant bacterial isolates may become a risk. However, phenotypic and genetic characterization of phage-resistant F. columnare isolates in this study revealed that they are less virulent than phage-susceptible isolates and thus not a challenge for phage therapy against columnaris disease. This is valuable information for the fish farming industry globally when considering phage-based prevention and curing methods for F. columnare infections.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Bacteriófagos/fisiología , Enfermedades de los Peces/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Flavobacterium/citología , Flavobacterium/patogenicidad , Flavobacterium/virología , Animales , Proteínas Bacterianas/inmunología , Sistemas de Secreción Bacterianos/inmunología , Bacteriófagos/genética , Peces , Infecciones por Flavobacteriaceae/microbiología , Flavobacterium/inmunología , Mutación , Virulencia
5.
Microorganisms ; 9(5)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946270

RESUMEN

The microbial community surrounding fish eyed eggs can harbor pathogenic bacteria. In this study we focused on rainbow trout (Oncorhynchus mykiss) eyed eggs and the potential of bacteriophages against the pathogenic bacteria Flavobacterium psychrophilum and F. columnare. An infection bath method was first established, and the effects of singular phages on fish eggs was assessed (survival of eyed eggs, interaction of phages with eyed eggs). Subsequently, bacteria-challenged eyed eggs were exposed to phages to evaluate their effects in controlling the bacterial population. Culture-based methods were used to enumerate the number of bacteria and/or phages associated with eyed eggs and in the surrounding environment. The results of the study showed that, with our infection model, it was possible to re-isolate F. psychrophilum associated with eyed eggs after the infection procedure, without affecting the survival of the eggs in the short term. However, this was not possible for F. columnare, as this bacterium grows at higher temperatures than the ones recommended for incubation of rainbow trout eyed eggs. Bacteriophages do not appear to negatively affect the survival of rainbow trout eyed eggs and they do not seem to strongly adhere to the surface of eyed eggs either. Finally, the results demonstrated a strong potential for short term (24 h) phage control of F. psychrophilum. However, further studies are needed to explore if phage control can be maintained for a longer period and to further elucidate the mechanisms of interactions between Flavobacteria and their phages in association with fish eggs.

6.
Clin Transl Allergy ; 10: 4, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31969979

RESUMEN

Clean and fresh indoor air supports health and well-being. However, indoor air can contain pollutants that can cause a variety of symptoms and reduce well-being. Individual exposure agents can also increase the risk of certain diseases. Finns have taken major steps to improve the quality of indoor air for several decades. The primary focus of these activities has been the prevention and reduction of exposure to poor indoor air quality through guidance and regulation directing remediation of damaged buildings. Nevertheless, reported symptoms related to poor indoor air quality are common in Finland. In addition to exposure to indoor air pollutants, this may be partly due to the lively public discussion on the health risks caused by poor indoor air quality, conflicting views between experts, and mistrust towards public authorities, building owners and builders. Because of the scale of the indoor air problems in Finland, people's needs for reliable information and support, and the major costs involved, there is a call for new evidence-based methods, perspectives and solutions. Therefore, the Finnish Institute for Health and Welfare initiated the Finnish Indoor Air and Health Programme 2018-2028 together with a number of collaborators and stakeholders. The primary, long-term objective of the programme is to reduce hazards to health and well-being linked to indoor environments in Finland. To fulfill this objective, the programme will focus on the promotion of human health and well-being, the prevention of hazards, improved communication and engage the whole health-care sector to manage better patients´ symptoms and complaints. The 10-year Finnish Indoor Air and Health Programme consists of four areas that aim (1) to increase understanding of the effects of indoor environments on health and well-being; (2) to develop the management of problems linked to indoor environments; (3) to improve the treatment and working and functional capacity of people with symptoms and illnesses; and (4) to strengthen the competence in matters related to indoor environments. The progress of the programme and reaching the predefined, quantitative goals will be monitored throughout the programme.

7.
BMC Infect Dis ; 18(1): 437, 2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-30157776

RESUMEN

BACKGROUND: International and national travelling has made the rapid spread of infectious diseases possible. Little information is available on the role of major traffic hubs, such as airports, in the transmission of respiratory infections, including seasonal influenza and a pandemic threat. We investigated the presence of respiratory viruses in the passenger environment of a major airport in order to identify risk points and guide measures to minimize transmission. METHODS: Surface and air samples were collected weekly at three different time points during the peak period of seasonal influenza in 2015-16 in Finland. Swabs from surface samples, and air samples were tested by real-time PCR for influenza A and B viruses, respiratory syncytial virus, adenovirus, rhinovirus and coronaviruses (229E, HKU1, NL63 and OC43). RESULTS: Nucleic acid of at least one respiratory virus was detected in 9 out of 90 (10%) surface samples, including: a plastic toy dog in the children's playground (2/3 swabs, 67%); hand-carried luggage trays at the security check area (4/8, 50%); the buttons of the payment terminal at the pharmacy (1/2, 50%); the handrails of stairs (1/7, 14%); and the passenger side desk and divider glass at a passport control point (1/3, 33%). Among the 10 respiratory virus findings at various sites, the viruses identified were: rhinovirus (4/10, 40%, from surfaces); coronavirus (3/10, 30%, from surfaces); adenovirus (2/10, 20%, 1 air sample, 1 surface sample); influenza A (1/10, 10%, surface sample). CONCLUSIONS: Detection of pathogen viral nucleic acids indicates respiratory viral surface contamination at multiple sites associated with high touch rates, and suggests a potential risk in the identified airport sites. Of the surfaces tested, plastic security screening trays appeared to pose the highest potential risk, and handling these is almost inevitable for all embarking passengers.


Asunto(s)
Aeropuertos , Contaminación de Equipos/estadística & datos numéricos , Infecciones del Sistema Respiratorio/virología , Virus/aislamiento & purificación , Adenoviridae/genética , Adenoviridae/aislamiento & purificación , Aeropuertos/normas , Aeropuertos/estadística & datos numéricos , Coronavirus/genética , Coronavirus/aislamiento & purificación , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Finlandia/epidemiología , Humanos , Gripe Humana/transmisión , Gripe Humana/virología , Reacción en Cadena en Tiempo Real de la Polimerasa , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Infecciones del Sistema Respiratorio/transmisión , Rhinovirus/genética , Rhinovirus/aislamiento & purificación , Tacto , Viaje/estadística & datos numéricos , Enfermedad Relacionada con los Viajes , Virus/genética
8.
J Environ Sci (China) ; 69: 227-238, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29941258

RESUMEN

This study aimed to evaluate the suitability of two bioaerosol generation systems (dry and wet generation) for the aerosolization of microorganisms isolated from the International Space Station, and to calibrate the produced bioaerosols to fulfill the requirements of computational fluid dynamics model (CFD) validation. Concentration, stability, size distribution, agglomeration of generated bioaerosol and deposition of bioaerosols were analyzed. In addition, the dispersion of non-viable particles in the air was studied. Experiments proved that wet generation from microbial suspensions could be used for the production of well-calibrated and stabile bioaerosols for model validation. For the simulation of the natural release of fungal spores, a dry generation method should be used. This study showed that the used CFD model simulated the spread of non-viable particles fairly well. The mathematical deposition model by Lai and Nazaroff could be used to estimate the deposition velocities of bioaerosols on surfaces, although it somewhat underestimated the measured deposition velocities.


Asunto(s)
Aerosoles/análisis , Microbiología del Aire , Monitoreo del Ambiente , Modelos Teóricos , Nave Espacial , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...