Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(18): e202303815, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38146753

RESUMEN

Supramolecular polymers built from stimuli-responsive host-guest interactions represent an attractive way of tailoring smart materials. Herein, we exploit the chaotropic effect of polyoxometalates and related host-guest properties to design unconventional polymer systems with reversible redox and thermo-responsive sol-gel transition. These supramolecular networks result from the association of cyclodextrin-based oligomers and Keggin-type POMs acting as electro-active crosslinking agents. The structure and the dynamics of such self-assembly systems have been investigated using a multiscale approach involving MALDI-TOF, viscosity measurements, cyclic voltammetry, 1H-NMR (1D and DOSY), and Small-Angle X-ray Scattering. Our results reveal that the chaotropic effect corresponds to a powerful and efficient force that can be used to induce responsiveness in hybrid supramolecular oligomeric systems.

2.
Polymers (Basel) ; 15(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37631435

RESUMEN

In this study, we developed highly efficient nonwoven membranes by modifying the surface of polypropylene (PP) and poly(butylene terephthalate) (PBT) through photo-grafting polymerization. The nonwoven membrane surfaces of PP and PBT were grafted with poly(ethylene glycol) diacrylate (PEGDA) in the presence of benzophenone (BP) and metal salt. We immobilized tertiary amine groups as BP synergists on commercial nonwoven membranes to improve PP and PBT surfaces. In situ Ag, Au, and Au/Ag nanoparticle formation enhances the nonwoven membrane surface. SEM, FTIR, and EDX were used to analyze the surface. We evaluated modified nonwoven membranes for photocatalytic activity by degrading methylene blue (MB) under LED and sunlight. Additionally, we also tested modified membranes for antibacterial activity against E. coli. The results indicated that the modified membranes exhibited superior efficiency in removing MB from water. The PBT showed the highest efficiency in dye removal, and bimetallic nanoparticles were more effective than monometallic. Modified membranes exposed to sunlight had higher efficiency than those exposed to LED light, with the PBT/Au/Ag membrane showing the highest dye removal at 97% within 90 min. The modified membranes showed reuse potential, with dye removal efficiency decreasing from 97% in the first cycle to 85% in the fifth cycle.

3.
Mikrochim Acta ; 190(8): 326, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495856

RESUMEN

A fluorescent microgel for BPA detection has been successfully prepared by cross-linking linear poly(styrene-co-glycidyl methacrylate) (poly (STY-co-GMA)) with L-cysteine-capped CdSe quantum dots (Lcys-caped CdSe QDs). The microgel contained specific binding sites created by the covalent grafting of the copolymer onto the QDs via the GMA units, allowing for selective trapping of BPA molecules through π-π and hydrogen bond interactions with phenyl, carboxylic, and amine groups. After binding, electron transfer from the QDs to the analyte quenched the fluorescence at a wavelength of 547 nm when excited at 400 nm. The rational compositional and structural design allows the microgel to accurately detect BPA concentrations over a wide dynamic range of 1.0×10-1 to 1.0×105 µg/L with a low detection limit (7.0×10-2 to 8.0×10-2 µg/L) in deionized, drinking, and tap waters within just 2.0 min. On top of that, the sensitivity for BPA detection was 2.0-4.6 times higher than that of the other 3 structural analogues, even molecular imprinting was not involved. The influence of the STY/GMA compositions in the copolymers and environmental conditions, including pH and ionic strength, on the sensing performance was determined. Moreover, the sensing mechanism and the selectivity with respect to the molecular features were elucidated.

4.
Carbohydr Polym ; 234: 115899, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32070519

RESUMEN

Cellulose nanocrystals (CNCs) are used to design nanocomposites because of their high aspect ratio and their outstanding mechanical and barrier properties. However, the low compatibility of hydrophilic CNCs with hydrophobic polymers remains a barrier to their use in the nanocomposite field. To improve this compatibility, poly(glycidyl methacrylate) (PGMA) was grafted from CNCs containing α-bromoisobutyryl moieties via surface-initiated atom transfer radical polymerization. The novelty of this research is the use of a reactive epoxy-containing monomer that can serve as a new platform for further modifications or crosslinking. Polymer-grafted CNC-PGMA-Br prepared at different polymerization times were characterized by XRD, DLS, FTIR, XPS and elemental analysis. Approximately 40 % of the polymer at the surface of the CNCs was quantified after only 1 h of polymerization. Finally, nanocomposites prepared with 10 wt% CNC-PGMA-Br as nanofillers in a poly(lactic acid) (PLA) matrix exhibited an improvement in their compatibilization based on SEM observation.


Asunto(s)
Celulosa/química , Compuestos Epoxi/síntesis química , Metacrilatos/síntesis química , Nanocompuestos/química , Nanopartículas/química , Poliésteres/química , Compuestos Epoxi/química , Metacrilatos/química , Tamaño de la Partícula , Polimerizacion , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...