Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 28(17): 2697-2704.e3, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30174190

RESUMEN

Kinesin-5 is a highly conserved homo-tetrameric protein complex responsible for crosslinking microtubules and pushing spindle poles apart. The budding yeast Kinesin-5, Cin8, is highly concentrated at kinetochores in mitosis before anaphase, but its functions there are largely unsolved. Here, we show that Cin8 localizes to kinetochores in a cell-cycle-dependent manner and concentrates near the microtubule binding domains of Ndc80 at metaphase. Cin8's kinetochore localization depends on the Ndc80 complex, kinetochore microtubules, and the Dam1 complex. Consistent with its kinetochore localization, a Cin8 deletion induces a loss of tension at the Ndc80 microtubule binding domains and a major delay in mitotic progression. Cin8 associates with Protein Phosphatase 1 (PP1), and mutants that inhibit its PP1 binding also induce a loss of tension at the Ndc80 microtubule binding domains and delay mitotic progression. Taken together, our results suggest that Cin8-PP1 plays a critical role at kinetochores to promote accurate chromosome segregation by controlling Ndc80 attachment to microtubules.


Asunto(s)
Segregación Cromosómica/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Cinesinas/metabolismo , Proteína Fosfatasa 1/metabolismo , Transporte de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromosomas Fúngicos , Regulación Enzimológica de la Expresión Génica , Cinesinas/genética , Cinetocoros , Proteína Fosfatasa 1/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Elife ; 72018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29323636

RESUMEN

Two-color fluorescence co-localization in 3D (three-dimension) has the potential to achieve accurate measurements at the nanometer length scale. Here, we optimized a 3D fluorescence co-localization method that uses mean values for chromatic aberration correction to yield the mean separation with ~10 nm accuracy between green and red fluorescently labeled protein epitopes within single human kinetochores. Accuracy depended critically on achieving small standard deviations in fluorescence centroid determination, chromatic aberration across the measurement field, and coverslip thickness. Computer simulations showed that large standard deviations in these parameters significantly increase 3D measurements from their true values. Our 3D results show that at metaphase, the protein linkage between CENP-A within the inner kinetochore and the microtubule-binding domain of the Ndc80 complex within the outer kinetochore is on average ~90 nm. The Ndc80 complex appears fully extended at metaphase and exhibits the same subunit structure in vivo as found in vitro by crystallography.


Asunto(s)
Proteína A Centromérica/análisis , Imagenología Tridimensional/métodos , Cinetocoros/química , Metafase , Microscopía Confocal/métodos , Proteínas Nucleares/análisis , Imagen Óptica/métodos , Proteínas del Citoesqueleto , Células HeLa , Humanos
3.
J Biol Chem ; 292(42): 17178-17189, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-28900032

RESUMEN

The mitotic spindle is composed of dynamic microtubules and associated proteins that together direct chromosome movement during mitosis. The spindle plays a vital role in accurate chromosome segregation fidelity and is a therapeutic target in cancer. Nevertheless, the molecular mechanisms by which many spindle-associated proteins function remains unknown. The nucleolar and spindle-associated protein NUSAP1 is a microtubule-binding protein implicated in spindle stability and chromosome segregation. We show here that NUSAP1 localizes to dynamic spindle microtubules in a unique chromosome-centric pattern, in the vicinity of overlapping microtubules, during metaphase and anaphase of mitosis. Mass spectrometry-based analysis of endogenous NUSAP1 interacting proteins uncovered a cell cycle-regulated interaction between the RanBP2-RanGAP1-UBC9 SUMO E3 ligase complex and NUSAP1. Like NUSAP1 depletion, RanBP2 depletion impaired the response of cells to the microtubule poison Taxol. NUSAP1 contains a conserved SAP domain (SAF-A/B, Acinus, and PIAS). SAP domains are common among many other SUMO E3s, and are implicated in substrate recognition and ligase activity. We speculate that NUSAP1 contributes to accurate chromosome segregation by acting as a co-factor for RanBP2-RanGAP1-UBC9 during cell division.


Asunto(s)
Segregación Cromosómica/fisiología , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Segregación Cromosómica/efectos de los fármacos , Proteínas Activadoras de GTPasa/genética , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Chaperonas Moleculares/genética , Proteínas de Complejo Poro Nuclear/genética , Paclitaxel/farmacología , Dominios Proteicos , Huso Acromático/genética , Huso Acromático/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética
4.
Bioessays ; 39(7)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28582586

RESUMEN

At metaphase in mitotic cells, pulling forces at the kinetochore-microtubule interface create tension by stretching the centromeric chromatin between oppositely oriented sister kinetochores. This tension is important for stabilizing the end-on kinetochore microtubule attachment required for proper bi-orientation of sister chromosomes as well as for satisfaction of the Spindle Assembly Checkpoint and entry into anaphase. How force is coupled by proteins to kinetochore microtubules and resisted by centromere stretch is becoming better understood as many of the proteins involved have been identified. Recent application of genetically encoded fluorescent tension sensors within the mechanical linkage between the centromere and kinetochore microtubules are beginning to reveal - from live cell assays - protein specific contributions that are functionally important.


Asunto(s)
Cinetocoros/fisiología , Anafase/fisiología , Animales , Cromatina/fisiología , Segregación Cromosómica/fisiología , Humanos , Microtúbulos/fisiología , Mitosis/fisiología , Huso Acromático/fisiología
5.
Nat Chem Biol ; 12(6): 411-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27043190

RESUMEN

Protein kinase signaling along the kinetochore-centromere axis is crucial to assure mitotic fidelity, yet the details of its spatial coordination are obscure. Here, we examined how pools of human Polo-like kinase 1 (Plk1) within this axis control signaling events to elicit mitotic functions. To do this, we restricted active Plk1 to discrete subcompartments within the kinetochore-centromere axis using chemical genetics and decoded functional and phosphoproteomic signatures of each. We observe distinct phosphoproteomic and functional roles, suggesting that Plk1 exists and functions in discrete pools along this axis. Deep within the centromere, Plk1 operates to assure proper chromosome alignment and segregation. Thus, Plk1 at the kinetochore is a conglomerate of an observable bulk pool coupled with additional functional pools below the threshold of microscopic detection or resolution. Although complex, this multiplicity of locales provides an opportunity to decouple functional and phosphoproteomic signatures for a comprehensive understanding of Plk1's kinetochore functions.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Cinetocoros/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Humanos , Quinasa Tipo Polo 1
6.
Nat Cell Biol ; 18(4): 382-92, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26974660

RESUMEN

The Ndc80 complex (Ndc80, Nuf2, Spc24 and Spc25) is a highly conserved kinetochore protein essential for end-on anchorage to spindle microtubule plus ends and for force generation coupled to plus-end polymerization and depolymerization. Spc24/Spc25 at one end of the Ndc80 complex binds the kinetochore. The N-terminal tail and CH domains of Ndc80 bind microtubules, and an internal domain binds microtubule-associated proteins (MAPs) such as the Dam1 complex. To determine how the microtubule- and MAP-binding domains of Ndc80 contribute to force production at the kinetochore in budding yeast, we have inserted a FRET tension sensor into the Ndc80 protein about halfway between its microtubule-binding and internal loop domains. The data support a mechanical model of force generation at metaphase where the position of the kinetochore relative to the microtubule plus end reflects the relative strengths of microtubule depolymerization, centromere stretch and microtubule-binding interactions with the Ndc80 and Dam1 complexes.


Asunto(s)
Centrómero/metabolismo , Cromosomas Fúngicos/metabolismo , Cinetocoros/metabolismo , Proteínas Luminiscentes , Microtúbulos/metabolismo , Sitios de Unión/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Cinética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Imagen de Lapso de Tiempo
7.
Nat Commun ; 6: 8161, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26345214

RESUMEN

The Ndc80 complex, which mediates end-on attachment of spindle microtubules, is linked to centromeric chromatin in human cells by two inner kinetochore proteins, CENP-T and CENP-C. Here to quantify their relative contributions to Ndc80 recruitment, we combine measurements of kinetochore protein copy number with selective protein depletion assays. This approach reveals about 244 Ndc80 complexes per human kinetochore (∼14 per kinetochore microtubule), 215 CENP-C, 72 CENP-T and only 151 Ndc80s as part of the KMN protein network (1:1:1 Knl1, Mis12 and Ndc80 complexes). Each CENP-T molecule recruits ∼2 Ndc80 complexes; one as part of a KMN network. In contrast, ∼40% of CENP-C recruits only a KMN network. Replacing the CENP-C domain that binds KMN with the CENP-T domain that recruits both an Ndc80 complex and KMN network yielded functional kinetochores. These results provide a quantitative picture of the linkages between centromeric chromatin and the microtubule-binding Ndc80 complex at the human kinetochore.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas del Citoesqueleto , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes , Células HeLa , Humanos , Immunoblotting , Imagen Óptica
8.
Dev Cell ; 30(6): 717-30, 2014 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-25268173

RESUMEN

Constitutive centromere-associated network (CCAN) proteins, particularly CENP-C, CENP-T, and the CENP-H/-I complex, mechanically link CENP-A-containing centromeric chromatin within the inner kinetochore to outer kinetochore proteins, such as the Ndc80 complex, that bind kinetochore microtubules. Accuracy of chromosome segregation depends critically upon Aurora B phosphorylation of Ndc80/Hec1. To determine how CCAN protein architecture mechanically constrains intrakinetochore stretch between CENP-A and Ndc80/Hec1 for proper Ndc80/Hec1 phosphorylation, we used super-resolution fluorescence microscopy and selective protein depletion. We found that at bi-oriented chromosomes in late prometaphase cells, CENP-T is stretched ∼16 nm to the inner end of Ndc80/Hec1, much less than expected for full-length CENP-T. Depletion of various CCAN linker proteins induced hyper-intrakinetochore stretch (an additional 20-60 nm) with corresponding significant decreases in Aurora B phosphorylation of Ndc80/Hec1. Thus, proper intrakinetochore stretch is required for normal kinetochore function and depends critically on all the CCAN mechanical linkers to the Ndc80 complex.


Asunto(s)
Autoantígenos/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Huso Acromático/metabolismo , Aurora Quinasa B/metabolismo , Proteína A Centromérica , Proteínas del Citoesqueleto , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica
9.
Methods Cell Biol ; 114: 179-210, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23931508

RESUMEN

This chapter describes the development of a high-resolution, multimode digital imaging system based on a wide-field epifluorescent and transmitted light microscope, and a cooled charge-coupled device (CCD) camera. The three main parts of this imaging system are Nikon FXA microscope, Hamamatsu C4880 cooled CCD camera, and MetaMorph digital imaging system. This chapter presents various design criteria for the instrument and describes the major features of the microscope components-the cooled CCD camera and the MetaMorph digital imaging system. The Nikon FXA upright microscope can produce high resolution images for both epifluorescent and transmitted light illumination without switching the objective or moving the specimen. The functional aspects of the microscope set-up can be considered in terms of the imaging optics, the epi-illumination optics, the transillumination optics, the focus control, and the vibration isolation table. This instrument is somewhat specialized for microtubule and mitosis studies, and it is also applicable to a variety of problems in cellular imaging, including tracking proteins fused to the green fluorescent protein in live cells. The instrument is also valuable for correlating the assembly dynamics of individual cytoplasmic microtubules (labeled by conjugating X-rhodamine to tubulin) with the dynamics of membranes of the endoplasmic reticulum (labeled with DiOC6) and the dynamics of the cell cortex (by differential interference contrast) in migrating vertebrate epithelial cells. This imaging system also plays an important role in the analysis of mitotic mutants in the powerful yeast genetic system Saccharomyces cerevisiae.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Análisis de la Célula Individual/métodos , Algoritmos , Animales , Células Cultivadas , Células Epiteliales/metabolismo , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/química , Humanos , Procesamiento de Imagen Asistido por Computador/instrumentación , Proteínas Mad2/metabolismo , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Microscopía de Contraste de Fase/instrumentación , Microscopía de Contraste de Fase/métodos , Microtúbulos/metabolismo , Mitosis , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de la Célula Individual/instrumentación , Xenopus
10.
Genes Dev ; 24(9): 957-71, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20439434

RESUMEN

The spindle checkpoint generates a "wait anaphase" signal at unattached kinetochores to prevent premature anaphase onset. Kinetochore-localized dynein is thought to silence the checkpoint by transporting checkpoint proteins from microtubule-attached kinetochores to spindle poles. Throughout metazoans, dynein recruitment to kinetochores requires the protein Spindly. Here, we identify a conserved motif in Spindly that is essential for kinetochore targeting of dynein. Spindly motif mutants, expressed following depletion of endogenous Spindly, target normally to kinetochores but prevent dynein recruitment. Spindly depletion and Spindly motif mutants, despite their similar effects on kinetochore dynein, have opposite consequences on chromosome alignment and checkpoint silencing. Spindly depletion delays chromosome alignment, but Spindly motif mutants ameliorate this defect, indicating that Spindly has a dynein recruitment-independent role in alignment. In Spindly depletions, the checkpoint is silenced following delayed alignment by a kinetochore dynein-independent mechanism. In contrast, Spindly motif mutants are retained on microtubule-attached kinetochores along with checkpoint proteins, resulting in persistent checkpoint signaling. Thus, dynein-mediated removal of Spindly from microtubule-attached kinetochores, rather than poleward transport per se, is the critical reaction in checkpoint silencing. In the absence of Spindly, a second mechanism silences the checkpoint; this mechanism is likely evolutionarily ancient, as fungi and higher plants lack kinetochore dynein.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Silenciador del Gen/fisiología , Genes cdc/fisiología , Cinetocoros/metabolismo , Mutación Puntual/genética , Secuencias de Aminoácidos/genética , Proteínas de Ciclo Celular , Cromosomas/genética , Complejo Dinactina , Dineínas/metabolismo , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Transporte de Proteínas/fisiología
11.
J Cell Biol ; 188(4): 481-9, 2010 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-20176922

RESUMEN

Several recent models for spindle length regulation propose an elastic pole to pole spindle matrix that is sufficiently strong to bear or antagonize forces generated by microtubules and microtubule motors. We tested this hypothesis using microneedles to skewer metaphase spindles in Xenopus laevis egg extracts. Microneedle tips inserted into a spindle just outside the metaphase plate resulted in spindle movement along the interpolar axis at a velocity slightly slower than microtubule poleward flux, bringing the nearest pole toward the needle. Spindle velocity decreased near the pole, which often split apart slowly, eventually letting the spindle move completely off the needle. When two needles were inserted on either side of the metaphase plate and rapidly moved apart, there was minimal spindle deformation until they reached the poles. In contrast, needle separation in the equatorial direction rapidly increased spindle width as constant length spindle fibers pulled the poles together. These observations indicate that an isotropic spindle matrix does not make a significant mechanical contribution to metaphase spindle length determination.


Asunto(s)
Huso Acromático/metabolismo , Animales , Fenómenos Biomecánicos/efectos de los fármacos , Reactivos de Enlaces Cruzados/farmacología , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Agujas , Huso Acromático/efectos de los fármacos , Xenopus
12.
J Cell Biol ; 186(1): 11-26, 2009 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-19581410

RESUMEN

The synchronous movement of chromosomes during anaphase ensures their correct inheritance in every cell division. This reflects the uniformity of spindle forces acting on chromosomes and their simultaneous entry into anaphase. Although anaphase onset is controlled by the spindle assembly checkpoint, it remains unknown how spindle forces are uniformly distributed among different chromosomes. In this paper, we show that tension uniformity at metaphase kinetochores and subsequent anaphase synchrony in Drosophila S2 cells are promoted by spindle microtubule flux. These results can be explained by a mechanical model of the spindle where microtubule poleward translocation events associated with flux reflect relaxation of the kinetochore-microtubule interface, which accounts for the redistribution and convergence of kinetochore tensions in a timescale comparable to typical metaphase duration. As predicted by the model, experimental acceleration of mitosis precludes tension equalization and anaphase synchrony. We propose that flux-dependent equalization of kinetochore tensions ensures a timely and uniform maturation of kinetochore-microtubule interfaces necessary for error-free and coordinated segregation of chromosomes in anaphase.


Asunto(s)
Segregación Cromosómica , Drosophila melanogaster/metabolismo , Cinetocoros/metabolismo , Anafase , Animales , Fenómenos Biomecánicos , Línea Celular , Movimiento Celular , Polaridad Celular , Cromosomas/metabolismo , Regulación hacia Abajo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Metafase , Microcirugia , Microtúbulos/metabolismo , Modelos Biológicos , Fenotipo , Interferencia de ARN , Huso Acromático/metabolismo
13.
Curr Biol ; 19(14): 1210-5, 2009 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-19540121

RESUMEN

During animal cell division, a gradient of GTP-bound Ran is generated around mitotic chromatin. It is generally accepted that this RanGTP gradient is essential for organizing the spindle, because it locally activates critical spindle assembly factors. Here, we show in Xenopus laevis egg extract, where the gradient is best characterized, that spindles can assemble in the absence of a RanGTP gradient. Gradient-free spindle assembly occurred around sperm nuclei but not around chromatin-coated beads and required the chromosomal passenger complex (CPC). Artificial enrichment of CPC activity within hybrid bead arrays containing both immobilized chromatin and the CPC supported local microtubule assembly even in the absence of a RanGTP gradient. We conclude that RanGTP and the CPC constitute the two major molecular signals that spatially promote microtubule polymerization around chromatin. Furthermore, we hypothesize that the two signals mainly originate from discreet physical sites on the chromosomes to localize microtubule assembly around chromatin: a RanGTP signal from any chromatin and a CPC-dependent signal predominantly generated from centromeric chromatin.


Asunto(s)
División Celular/fisiología , Cromatina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/fisiología , Proteína de Unión al GTP ran/metabolismo , Animales , Aurora Quinasas , Centrosoma/fisiología , Cinética , Cinetocoros/fisiología , Microscopía Fluorescente , Microesferas , Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Xenopus laevis
14.
Mol Biol Cell ; 20(11): 2766-73, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19369413

RESUMEN

Distinct pathways from centrosomes and chromatin are thought to contribute in parallel to microtubule nucleation and stabilization during animal cell mitotic spindle assembly, but their full mechanisms are not known. We investigated the function of three proposed nucleation/stabilization factors, TPX2, gamma-tubulin and XMAP215, in chromatin-promoted assembly of anastral spindles in Xenopus laevis egg extract. In addition to conventional depletion-add back experiments, we tested whether factors could substitute for each other, indicative of functional redundancy. All three factors were required for microtubule polymerization and bipolar spindle assembly around chromatin beads. Depletion of TPX2 was partially rescued by the addition of excess XMAP215 or EB1, or inhibiting MCAK (a Kinesin-13). Depletion of either gamma-tubulin or XMAP215 was partially rescued by adding back XMAP215, but not by adding any of the other factors. These data reveal functional redundancy between specific assembly factors in the chromatin pathway, suggesting individual proteins or pathways commonly viewed to be essential may not have entirely unique functions.


Asunto(s)
Cromatina/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Cinesinas/metabolismo , Cinética , Microscopía Fluorescente/métodos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oocitos/citología , Oocitos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Factores de Tiempo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
15.
Mol Biol Cell ; 20(9): 2371-80, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19261808

RESUMEN

When chromosomes are aligned and bioriented at metaphase, the elastic stretch of centromeric chromatin opposes pulling forces exerted on sister kinetochores by the mitotic spindle. Here we show that condensin ATPase activity is an important regulator of centromere stiffness and function. Condensin depletion decreases the stiffness of centromeric chromatin by 50% when pulling forces are applied to kinetochores. However, condensin is dispensable for the normal level of compaction (rest length) of centromeres, which probably depends on other factors that control higher-order chromatin folding. Kinetochores also do not require condensin for their structure or motility. Loss of stiffness caused by condensin-depletion produces abnormal uncoordinated sister kinetochore movements, leads to an increase in Mad2(+) kinetochores near the metaphase plate and delays anaphase onset.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Centrómero/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Vertebrados/metabolismo , Animales , Autoantígenos/metabolismo , Línea Celular , Centrómero/ultraestructura , Proteína A Centromérica , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Silenciador del Gen , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Microtúbulos/ultraestructura , Mitosis , Proteínas Recombinantes de Fusión/metabolismo , Huso Acromático/metabolismo , Huso Acromático/ultraestructura
16.
J Cell Biol ; 184(3): 373-81, 2009 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-19193623

RESUMEN

Cells have evolved a signaling pathway called the spindle assembly checkpoint (SAC) to increase the fidelity of chromosome segregation by generating a "wait anaphase" signal until all chromosomes are properly aligned within the mitotic spindle. It has been proposed that tension generated by the stretch of the centromeric chromatin of bioriented chromosomes stabilizes kinetochore microtubule attachments and turns off SAC activity. Although biorientation clearly causes stretching of the centromeric chromatin, it is unclear whether the kinetochore is also stretched. To test whether intrakinetochore stretch occurs and is involved in SAC regulation, we developed a Drosophila melanogaster S2 cell line expressing centromere identifier-mCherry and Ndc80-green fluorescent protein to mark the inner and outer kinetochore domains, respectively. We observed stretching within kinetochores of bioriented chromosomes by monitoring both inter- and intrakinetochore distances in live cell assays. This intrakinetochore stretch is largely independent of a 30-fold variation in centromere stretch. Furthermore, loss of intrakinetochore stretch is associated with enhancement of 3F3/2 phosphorylation and SAC activation.


Asunto(s)
Centrómero/metabolismo , Cinetocoros/metabolismo , Huso Acromático/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Centrómero/ultraestructura , Colchicina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Epítopos/metabolismo , Cinetocoros/ultraestructura , Paclitaxel/metabolismo , Fosforilación , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Huso Acromático/ultraestructura , Estrés Mecánico , Moduladores de Tubulina/metabolismo
17.
Cell ; 135(5): 894-906, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19041752

RESUMEN

During mitosis, sister chromatids congress to the spindle equator and are subsequently segregated via attachment to dynamic kinetochore microtubule (kMT) plus ends. A major question is how kMT plus-end assembly is spatially regulated to achieve chromosome congression. Here we find in budding yeast that the widely conserved kinesin-5 sliding motor proteins, Cin8p and Kip1p, mediate chromosome congression by suppressing kMT plus-end assembly of longer kMTs. Of the two, Cin8p is the major effector and its activity requires a functional motor domain. In contrast, the depolymerizing kinesin-8 motor Kip3p plays a minor role in spatial regulation of yeast kMT assembly. Our analysis identified a model where kinesin-5 motors bind to kMTs, move to kMT plus ends, and upon arrival at a growing plus end promote net kMT plus-end disassembly. In conclusion, we find that length-dependent control of net kMT assembly by kinesin-5 motors yields a simple and stable self-organizing mechanism for chromosome congression.


Asunto(s)
Cinesinas/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromosomas Fúngicos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Motoras Moleculares , Mutación , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
18.
J Cell Biol ; 182(4): 631-9, 2008 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-18710922

RESUMEN

Continuous poleward movement of tubulin is a hallmark of metaphase spindle dynamics in higher eukaryotic cells and is essential for stable spindle architecture and reliable chromosome segregation. We use quantitative fluorescent speckle microscopy to map with high resolution the spatial organization of microtubule flux in Xenopus laevis egg extract meiotic spindles. We find that the flux velocity decreases near spindle poles by approximately 20%. The regional variation is independent of functional kinetochores and centrosomes and is suppressed by inhibition of dynein/dynactin, kinesin-5, or both. Statistical analysis reveals that tubulin flows in two distinct velocity modes. We propose an association of these modes with two architecturally distinct yet spatially overlapping and dynamically cross-linked arrays of microtubules: focused polar microtubule arrays of a uniform polarity and slower flux velocities are interconnected by a dense barrel-like microtubule array of antiparallel polarities and faster flux velocities.


Asunto(s)
Meiosis , Metafase , Microtúbulos/metabolismo , Óvulo/citología , Huso Acromático/metabolismo , Xenopus laevis/metabolismo , Animales , Extractos Celulares , Polaridad Celular , ADN/metabolismo , Complejo Dinactina , Dineínas/metabolismo , Cinesinas/metabolismo , Microesferas , Proteínas Asociadas a Microtúbulos/metabolismo , Plásmidos/metabolismo
19.
Cell ; 133(3): 427-39, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18455984

RESUMEN

Kinetochores are proteinaceous assemblies that mediate the interaction of chromosomes with the mitotic spindle. The 180 kDa Ndc80 complex is a direct point of contact between kinetochores and microtubules. Its four subunits contain coiled coils and form an elongated rod structure with functional globular domains at either end. We crystallized an engineered "bonsai" Ndc80 complex containing a shortened rod domain but retaining the globular domains required for kinetochore localization and microtubule binding. The structure reveals a microtubule-binding interface containing a pair of tightly interacting calponin-homology (CH) domains with a previously unknown arrangement. The interaction with microtubules is cooperative and predominantly electrostatic. It involves positive charges in the CH domains and in the N-terminal tail of the Ndc80 subunit and negative charges in tubulin C-terminal tails and is regulated by the Aurora B kinase. We discuss our results with reference to current models of kinetochore-microtubule attachment and centromere organization.


Asunto(s)
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografía por Rayos X , Proteínas del Citoesqueleto , Humanos , Espectrometría de Masas , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Ingeniería de Proteínas , Huso Acromático/metabolismo
20.
Genes Dev ; 22(1): 91-105, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18086858

RESUMEN

beta-Catenin plays important roles in cell adhesion and gene transcription, and has been shown recently to be essential for the establishment of a bipolar mitotic spindle. Here we show that beta-catenin is a component of interphase centrosomes and that stabilization of beta-catenin, mimicking mutations found in cancers, induces centrosome splitting. Centrosomes are held together by a dynamic linker regulated by Nek2 kinase and its substrates C-Nap1 (centrosomal Nek2-associated protein 1) and Rootletin. We show that beta-catenin binds to and is phosphorylated by Nek2, and is in a complex with Rootletin. In interphase, beta-catenin colocalizes with Rootletin between C-Nap1 puncta at the proximal end of centrioles, and this localization is dependent on C-Nap1 and Rootletin. In mitosis, when Nek2 activity increases, beta-catenin localizes to centrosomes at spindle poles independent of Rootletin. Increased Nek2 activity disrupts the interaction of Rootletin with centrosomes and results in binding of beta-catenin to Rootletin-independent sites on centrosomes, an event that is required for centrosome separation. These results identify beta-catenin as a component of the intercentrosomal linker and define a new function for beta-catenin as a key regulator of mitotic centrosome separation.


Asunto(s)
Centrosoma/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , beta Catenina/metabolismo , Animales , Proteínas del Dominio Armadillo/metabolismo , Células Cultivadas , Centrosoma/enzimología , Proteínas del Citoesqueleto/análisis , Proteínas del Citoesqueleto/metabolismo , Perros , Humanos , Interfase , Quinasas Relacionadas con NIMA , Proteínas/análisis , Proteínas/metabolismo , beta Catenina/análisis , ARNt Metiltransferasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...