Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31757830

RESUMEN

To produce high levels of ß-lactams, the filamentous fungus Penicillium rubens (previously named Penicillium chrysogenum) has been subjected to an extensive classical strain improvement (CSI) program during the last few decades. This has led to the accumulation of many mutations that were spread over the genome. Detailed analysis reveals that several mutations targeted genes that encode enzymes involved in amino acid metabolism, in particular biosynthesis of l-cysteine, one of the amino acids used for ß-lactam production. To examine the impact of the mutations on enzyme function, the respective genes with and without the mutations were cloned and expressed in Escherichia coli, purified, and enzymatically analyzed. Mutations severely impaired the activities of a threonine and serine deaminase, and this inactivates metabolic pathways that compete for l-cysteine biosynthesis. Tryptophan synthase, which converts l-serine into l-tryptophan, was inactivated by a mutation, whereas a mutation in 5-aminolevulinate synthase, which utilizes glycine, was without an effect. Importantly, CSI caused increased expression levels of a set of genes directly involved in cysteine biosynthesis. These results suggest that CSI has resulted in improved cysteine biosynthesis by the inactivation of the enzymatic conversions that directly compete for resources with the cysteine biosynthetic pathway, consistent with the notion that cysteine is a key component during penicillin production.IMPORTANCEPenicillium rubens is an important industrial producer of ß-lactam antibiotics. High levels of penicillin production were enforced through extensive mutagenesis during a classical strain improvement (CSI) program over 70 years. Several mutations targeted amino acid metabolism and resulted in enhanced l-cysteine biosynthesis. This work provides a molecular explanation for the interrelation between secondary metabolite production and amino acid metabolism and how classical strain improvement has resulted in improved production strains.


Asunto(s)
Aminoácidos/metabolismo , Cisteína/biosíntesis , Mutación , Penicilinas/biosíntesis , Penicillium chrysogenum/genética , beta-Lactamas/metabolismo , Vías Biosintéticas , Escherichia coli/genética , Microorganismos Modificados Genéticamente/genética , Penicillium chrysogenum/metabolismo
2.
Microbiologyopen ; 7(5): e00598, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29575742

RESUMEN

The Pc21 g14570 gene of Penicillium chrysogenum encodes an ortholog of a class 2 histone deacetylase termed HdaA which may play a role in epigenetic regulation of secondary metabolism. Deletion of the hdaA gene induces a significant pleiotropic effect on the expression of a set of polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS)-encoding genes. The deletion mutant exhibits a decreased conidial pigmentation that is related to a reduced expression of the PKS gene Pc21 g16000 (pks17) responsible for the production of the pigment precursor naphtha-γ-pyrone. Moreover, the hdaA deletion caused decreased levels of the yellow pigment chrysogine that is associated with the downregulation of the NRPS-encoding gene Pc21 g12630 and associated biosynthetic gene cluster. In contrast, transcriptional activation of the sorbicillinoids biosynthetic gene cluster occurred concomitantly with the overproduction of associated compounds . A new compound was detected in the deletion strain that was observed only under conditions of sorbicillinoids production, suggesting crosstalk between biosynthetic gene clusters. Our present results show that an epigenomic approach can be successfully applied for the activation of secondary metabolism in industrial strains of P. chrysogenum.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Histona Desacetilasas/deficiencia , Penicillium chrysogenum/genética , Penicillium chrysogenum/metabolismo , Metabolismo Secundario , Vías Biosintéticas , Eliminación de Gen , Péptido Sintasas/biosíntesis , Pigmentos Biológicos/metabolismo , Sintasas Poliquetidas/biosíntesis , Esporas Fúngicas/metabolismo
3.
Appl Environ Microbiol ; 84(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29196288

RESUMEN

Chrysogine is a yellow pigment produced by Penicillium chrysogenum and other filamentous fungi. Although the pigment was first isolated in 1973, its biosynthetic pathway has so far not been resolved. Here, we show that deletion of the highly expressed nonribosomal peptide synthetase (NRPS) gene Pc21g12630 (chyA) resulted in a decrease in the production of chrysogine and 13 related compounds in the culture broth of P. chrysogenum Each of the genes of the chyA-containing gene cluster was individually deleted, and corresponding mutants were examined by metabolic profiling in order to elucidate their function. The data suggest that the NRPS ChyA mediates the condensation of anthranilic acid and alanine into the intermediate 2-(2-aminopropanamido)benzoic acid, which was verified by feeding experiments of a ΔchyA strain with the chemically synthesized product. The remainder of the pathway is highly branched, yielding at least 13 chrysogine-related compounds.IMPORTANCEPenicillium chrysogenum is used in industry for the production of ß-lactams, but also produces several other secondary metabolites. The yellow pigment chrysogine is one of the most abundant metabolites in the culture broth, next to ß-lactams. Here, we have characterized the biosynthetic gene cluster involved in chrysogine production and elucidated a complex and highly branched biosynthetic pathway, assigning each of the chrysogine cluster genes to biosynthetic steps and metabolic intermediates. The work further unlocks the metabolic potential of filamentous fungi and the complexity of secondary metabolite pathways.


Asunto(s)
Vías Biosintéticas/genética , Penicillium chrysogenum/genética , Quinazolinonas/metabolismo , Familia de Multigenes , Penicillium chrysogenum/metabolismo , Péptido Sintasas/metabolismo , Pigmentación , Metabolismo Secundario
4.
Microb Biotechnol ; 10(4): 958-968, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28618182

RESUMEN

Penicillium chrysogenum is a filamentous fungus that is used to produce ß-lactams at an industrial scale. At an early stage of classical strain improvement, the ability to produce the yellow-coloured sorbicillinoids was lost through mutation. Sorbicillinoids are highly bioactive of great pharmaceutical interest. By repair of a critical mutation in one of the two polyketide synthases in an industrial P. chrysogenum strain, sorbicillinoid production was restored at high levels. Using this strain, the sorbicillin biosynthesis pathway was elucidated through gene deletion, overexpression and metabolite profiling. The polyketide synthase enzymes SorA and SorB are required to generate the key intermediates sorbicillin and dihydrosorbicillin, which are subsequently converted to (dihydro)sorbillinol by the FAD-dependent monooxygenase SorC and into the final product oxosorbicillinol by the oxidoreductase SorD. Deletion of either of the two pks genes not only impacted the overall production but also strongly reduce the expression of the pathway genes. Expression is regulated through the interplay of two transcriptional regulators: SorR1 and SorR2. SorR1 acts as a transcriptional activator, while SorR2 controls the expression of sorR1. Furthermore, the sorbicillinoid pathway is regulated through a novel autoinduction mechanism where sorbicillinoids activate transcription.


Asunto(s)
Vías Biosintéticas/genética , Regulación Fúngica de la Expresión Génica , Penicillium chrysogenum/genética , Penicillium chrysogenum/metabolismo , Resorcinoles/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Expresión Génica , Metabolómica
5.
Appl Environ Microbiol ; 82(13): 3971-3978, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27107123

RESUMEN

UNLABELLED: Secondary metabolism in Penicillium chrysogenum was intensively subjected to classical strain improvement (CSI), the resulting industrial strains producing high levels of ß-lactams. During this process, the production of yellow pigments, including sorbicillinoids, was eliminated as part of a strategy to enable the rapid purification of ß-lactams. Here we report the identification of the polyketide synthase (PKS) gene essential for sorbicillinoid biosynthesis in P. chrysogenum We demonstrate that the production of polyketide precursors like sorbicillinol and dihydrosorbicillinol as well as their derivatives bisorbicillinoids requires the function of a highly reducing PKS encoded by the gene Pc21g05080 (pks13). This gene belongs to the cluster that was mutated and transcriptionally silenced during the strain improvement program. Using an improved ß-lactam-producing strain, repair of the mutation in pks13 led to the restoration of sorbicillinoid production. This now enables genetic studies on the mechanism of sorbicillinoid biosynthesis in P. chrysogenum and opens new perspectives for pathway engineering. IMPORTANCE: Sorbicillinoids are secondary metabolites with antiviral, anti-inflammatory, and antimicrobial activities produced by filamentous fungi. This study identified the gene cluster responsible for sorbicillinoid formation in Penicillium chrysogenum, which now allows engineering of this diverse group of compounds.


Asunto(s)
Penicillium chrysogenum/enzimología , Penicillium chrysogenum/metabolismo , Sintasas Poliquetidas/metabolismo , Resorcinoles/metabolismo , Ingeniería Metabólica , Penicillium chrysogenum/genética , Pigmentos Biológicos/metabolismo , Sintasas Poliquetidas/genética
6.
BMC Genomics ; 16: 937, 2015 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-26572918

RESUMEN

BACKGROUND: Penicillium chrysogenum is a filamentous fungus that is employed as an industrial producer of ß-lactams. The high ß-lactam titers of current strains is the result of a classical strain improvement program (CSI) starting with a wild-type like strain more than six decades ago. This involved extensive mutagenesis and strain selection for improved ß-lactam titers and growth characteristics. However, the impact of the CSI on the secondary metabolism in general remains unknown. RESULTS: To examine the impact of CSI on secondary metabolism, a comparative genomic analysis of ß-lactam producing strains was carried out by genome sequencing of three P. chrysogenum strains that are part of a lineage of the CSI, i.e., strains NRRL1951, Wisconsin 54-1255, DS17690, and the derived penicillin biosynthesis cluster free strain DS68530. CSI has resulted in a wide spread of mutations, that statistically did not result in an over- or underrepresentation of specific gene classes. However, in this set of mutations, 8 out of 31 secondary metabolite genes (20 polyketide synthases and 11 non-ribosomal peptide synthetases) were targeted with a corresponding and progressive loss in the production of a range of secondary metabolites unrelated to ß-lactam production. Additionally, key Velvet complex proteins (LeaA and VelA) involved in global regulation of secondary metabolism have been repeatedly targeted for mutagenesis during CSI. Using comparative metabolic profiling, the polyketide synthetase gene cluster was identified that is responsible for sorbicillinoid biosynthesis, a group of yellow-colored metabolites that are abundantly produced by early production strains of P. chrysogenum. CONCLUSIONS: The classical industrial strain improvement of P. chrysogenum has had a broad mutagenic impact on metabolism and has resulted in silencing of specific secondary metabolite genes with the concomitant diversion of metabolism towards the production of ß-lactams.


Asunto(s)
Penicillium chrysogenum/genética , beta-Lactamas/metabolismo , Genes Fúngicos , Metaboloma , Familia de Multigenes , Mutación , Penicillium chrysogenum/metabolismo , Especificidad de la Especie
7.
Chembiochem ; 16(6): 915-23, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25766600

RESUMEN

Penicillium chrysogenum, which lacks the roqA gene, processes synthetic, exogenously added histidyltryptophanyldiketopiperazine (HTD) to yield a set of roquefortine-based secondary metabolites also produced by the wild-type strain. Feeding a number of synthetic HTD analogues to the ΔroqA strain gives rise to the biosynthesis of a number of new roquefortine D derivatives, depending on the nature of the synthetic HTD added. Besides delivering semisynthetic roquefortine analogues, the mutasynthesis studies presented here also shed light on the substrate preferences and molecular mechanisms employed by the roquefortine C/D biosynthesis gene cluster, knowledge that may be tapped for the future development of more complex semisynthetic roquefortine-based secondary metabolites.


Asunto(s)
Proteínas Fúngicas/genética , Indoles/química , Indoles/metabolismo , Mutación , Penicillium chrysogenum/genética , Penicillium chrysogenum/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/metabolismo , Familia de Multigenes/genética , Piperazinas/química , Piperazinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...