Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Photochem Photobiol B ; 259: 113019, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39217730

RESUMEN

Photobiomodulation therapy (PBMT) is a form of treatment commonly used for routine clinical applications, such as wound healing of the skin and reduction of inflammation. Additionally, PBMT has been explored for its potential in pain relief. In this work, we investigated the effect of PBMT on ion content within the 50B11 sensory neurons cell line in vitro using X-Ray fluorescence (XRF) and atomic force microscope (AFM) analysis. Two irradiation protocols were selected utilizing near-infrared laser lights at 800 and 970 nm, with cell fixation immediately following irradiation. Results showed a decrease in Calcium content after irradiation with both protocols, and with lidocaine, used as an analgesic control. Furthermore, a reduction in Potassium content was observed, particularly evident when normalized to cellular volume. These findings provide valuable insights into the molecular impact of PBMT within 50B11 sensory neurons under normal conditions. Such understanding may contribute to the wider adoption of PBMT as a therapeutic approach.

2.
J Med Chem ; 67(8): 6189-6206, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38577779

RESUMEN

Identification of intracellular targets of anticancer drug candidates provides key information on their mechanism of action. Exploiting the ability of the anticancer (C∧N)-chelated half-sandwich iridium(III) complexes to covalently bind proteins, click chemistry with a bioorthogonal azido probe was used to localize a phenyloxazoline-chelated iridium complex within cells and profile its interactome at the proteome-wide scale. Proteins involved in protein folding and actin cytoskeleton regulation were identified as high-affinity targets. Upon iridium complex treatment, the folding activity of Heat Shock Protein HSP90 was inhibited in vitro and major cytoskeleton disorganization was observed. A wide array of imaging and biochemical methods validated selected targets and provided a multiscale overview of the effects of this complex on live human cells. We demonstrate that it behaves as a dual agent, inducing both electrophilic and oxidative stresses in cells that account for its cytotoxicity. The proposed methodological workflow can open innovative avenues in metallodrug discovery.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Iridio , Estrés Oxidativo , Humanos , Iridio/química , Iridio/farmacología , Estrés Oxidativo/efectos de los fármacos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/química , Química Clic
3.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36834956

RESUMEN

An improved understanding of an ovary's structures is highly desirable to support advances in folliculogenesis knowledge and reproductive medicine, with particular attention to fertility preservation options for prepubertal girls with malignant tumors. Although currently the golden standard for structural analysis is provided by combining histological sections, staining, and visible 2D microscopic inspection, synchrotron radiation phase-contrast microtomography is becoming a new challenge for three-dimensional studies at micrometric resolution. To this aim, the proper use of contrast agents can improve the visualization of internal structures in ovary tissues, which normally present a low radiopacity. In this study, we report a comparison of four staining protocols, based on iodine or tungsten containing agents, applied to bovine ovarian tissues fixed in Bouin's solution. The microtomography (microCT) analyses at two synchrotron facilities under different set-ups were performed at different energies in order to maximize the image contrast. While tungsten-based agents allow large structures to be well identified, Iodine ones better highlight smaller features, especially when acquired above the K-edge energy of the specific metal. Further scans performed at lower energy where the setup was optimized for overall quality and sensitivity from phase-contrast still provided highly resolved visualization of follicular and intrafollicular structures at different maturation stages, independent of the staining protocol. The analyses were complemented by X-ray Fluorescence mapping on 2D sections, showing that the tungsten-based agent has a higher penetration in this type of tissues.


Asunto(s)
Imagenología Tridimensional , Yodo , Humanos , Femenino , Animales , Bovinos , Imagenología Tridimensional/métodos , Microscopía , Rayos X , Microtomografía por Rayos X/métodos , Ovario , Tungsteno , Medios de Contraste/química
4.
Sci Total Environ ; 864: 161028, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36549535

RESUMEN

BACKGROUND: Endometriosis is a disease affecting 10-15 % of women worldwide, consisting in the ectopic growth of endometrial cells outside the uterine cavity. Whist the pathogenetic mechanisms of endometriosis remain elusive and contemplating even environmental causes, iron deposits are common in endometrial lesions, indicating an altered iron metabolism at this level. This study was undertaken to reveal a possible relationship between iron dysmetabolism and accumulation of environmental metals. METHODS: By combining histological and histochemical analysis (H&E and Perl's staining) with µ- and nano- synchrotron-based (SR-based) X-ray Fluorescence (XRF) microscopy, we investigated the distribution of iron and other elements in the ovarian endometriomas of 12 endometriosis patients and in 7 healthy endometrium samples. RESULTS: XRF microscopy expanded the findings obtained by Perl's staining, revealing with an exceptional sensitivity intracellular features of iron accumulation in the epithelial endometrium, stroma and macrophages of the endometriotic lesions. XRF evidenced that iron was specifically accumulated in multiple micro aggregates, reaching concentrations up to 10-20 % p/p. Moreover, by XRF analysis we revealed for the first time the retention of a number of exogenous and potentially toxic metals such as Pb, Br, Ti, Al Cr, Si and Rb partially or totally co-localizing with iron. CONCLUSION: µXRF reveals accumulation and colocalization of iron and environmental metals in human ovarian endometriosis, suggesting a role in the pathogenesis of endometriosis.


Asunto(s)
Endometriosis , Enfermedades Uterinas , Humanos , Femenino , Endometriosis/metabolismo , Endometriosis/patología , Hierro/toxicidad , Hierro/metabolismo , Endometrio/metabolismo , Endometrio/patología , Enfermedades Uterinas/metabolismo , Enfermedades Uterinas/patología , Células Epiteliales/patología
5.
Sci Adv ; 7(29)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34261651

RESUMEN

Subsurface habitats on Earth host an extensive extant biosphere and likely provided one of Earth's earliest microbial habitats. Although the site of life's emergence continues to be debated, evidence of early life provides insights into its early evolution and metabolic affinity. Here, we present the discovery of exceptionally well-preserved, ~3.42-billion-year-old putative filamentous microfossils that inhabited a paleo-subseafloor hydrothermal vein system of the Barberton greenstone belt in South Africa. The filaments colonized the walls of conduits created by low-temperature hydrothermal fluid. Combined with their morphological and chemical characteristics as investigated over a range of scales, they can be considered the oldest methanogens and/or methanotrophs that thrived in an ultramafic volcanic substrate.

6.
J Vis Exp ; (154)2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31885377

RESUMEN

Very little is known about the distribution of metal ions at the subcellular level. However, those chemical elements have essential regulatory functions and their disturbed homeostasis is involved in various diseases. State-of-the-art synchrotron X-ray fluorescence nanoprobes provide the required sensitivity and spatial resolution to elucidate the two-dimensional (2D) and three-dimensional (3D) distribution and concentration of metals inside entire cells at the organelle level. This opens new exciting scientific fields of investigation on the role of metals in the physiopathology of the cell. The cellular preparation is a key and often complex procedure, particularly for basic analysis. Although X-ray fluorescence techniques are now widespread and various preparation methods have been used, very few studies have investigated the preservation of the elemental content of cells at best, and no stepwise detailed protocol for the cryopreparation of adherent cells for X-ray fluorescence nanoprobes has been released so far. This is a description of a protocol that provides the stepwise cellular preparation for fast cryofixation to enable synchrotron X-ray fluorescence nano-analysis of cells in a frozen hydrated state when a cryogenic environment and transfer is available. In case nano-analysis has to be performed at room temperature, an additional procedure for freeze-drying the cryofixed adherent cellular preparation is provided. The proposed protocols have been successfully used in previous works, most recently in studying the 2D and 3D intracellular distribution of an organometallic compound in breast cancer cells.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Compuestos de Silicona/química , Sincrotrones/normas , Fluorescencia , Humanos
7.
J Synchrotron Radiat ; 26(Pt 5): 1751-1762, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31490167

RESUMEN

X-ray ptychography is a coherent diffraction imaging technique with a high resolving power and excellent quantitative capabilities. Although very popular in synchrotron facilities nowadays, its implementation with X-ray energies above 15 keV is very rare due to the challenges imposed by the high energies. Here, the implementation of high-energy X-ray ptychography at 17 and 33.6 keV is demonstrated and solutions to overcome the important challenges are provided. Among the particular aspects addressed are the use of an efficient high-energy detector, a long synchrotron beamline for the high degree of spatial coherence, a beam with 1% monochromaticity providing high flux, and efficient multilayer coated Kirkpatrick-Baez X-ray optics to shape the beam. The constraints imposed by the large energy bandwidth are carefully analyzed, as well as the requirements to sample correctly the high-energy diffraction patterns with small speckle size. In this context, optimized scanning trajectories allow the total acquisition time to be reduced by up to 35%. The paper explores these innovative solutions at the ID16A nano-imaging beamline by ptychographic imaging of a 200 nm-thick gold lithography sample.


Asunto(s)
Óptica y Fotónica/instrumentación , Intensificación de Imagen Radiográfica/instrumentación , Sincrotrones , Diseño de Equipo , Oro/química , Modelos Teóricos , Difracción de Rayos X , Rayos X
8.
Proc Natl Acad Sci U S A ; 116(30): 14893-14898, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31285331

RESUMEN

Fibrous particles interact with cells and organisms in complex ways that can lead to cellular dysfunction, cell death, inflammation, and disease. The development of conductive transparent networks (CTNs) composed of metallic silver nanowires (AgNWs) for flexible touchscreen displays raises new possibilities for the intimate contact between novel fibers and human skin. Here, we report that a material property, nanowire-bending stiffness that is a function of diameter, controls the cytotoxicity of AgNWs to nonimmune cells from humans, mice, and fish without deterioration of critical CTN performance parameters: electrical conductivity and optical transparency. Both 30- and 90-nm-diameter AgNWs are readily internalized by cells, but thinner NWs are mechanically crumpled by the forces imposed during or after endocytosis, while thicker nanowires puncture the enclosing membrane and release silver ions and lysosomal contents to the cytoplasm, thereby initiating oxidative stress. This finding extends the fiber pathology paradigm and will enable the manufacture of safer products incorporating AgNWs.


Asunto(s)
Endosomas/metabolismo , Fibroblastos/efectos de los fármacos , Lisosomas/metabolismo , Nanocables/toxicidad , Animales , Línea Celular , Células Cultivadas , Conductividad Eléctrica , Fibroblastos/metabolismo , Peces , Humanos , Ratones , Nanocables/química , Estrés Oxidativo , Plata/química
9.
ACS Chem Neurosci ; 10(1): 599-609, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30272946

RESUMEN

Manganese (Mn) is an essential metal that can be neurotoxic when elevated exposition occurs leading to parkinsonian-like syndromes. Mutations in the Slc30a10 gene have been identified in new forms of familial parkinsonism. SLC30A10 is a cell surface protein involved in the efflux of Mn and protects the cell against Mn toxicity. Disease-causing mutations block the efflux activity of SLC30A10, resulting in Mn accumulation. Determining the intracellular localization of Mn when disease-causing SLC30A10 mutants are expressed is essential to elucidate the mechanisms of Mn neurotoxicity. Here, using organelle fluorescence microscopy and synchrotron X-ray fluorescence (SXRF) imaging, we found that Mn accumulates in the Golgi apparatus of human cells transfected with the disease-causing SLC30A10-Δ105-107 mutant under physiological conditions and after exposure to Mn. In cells expressing the wild-type SLC30A10 protein, cellular Mn content was low after all exposure conditions, confirming efficient Mn efflux. In nontransfected cells that do not express endogenous SLC30A10 and in mock transfected cells, Mn was located in the Golgi apparatus, similarly to its distribution in cells expressing the mutant protein, confirming deficient Mn efflux. The newly developed SXRF cryogenic nanoimaging (<50 nm resolution) indicated that Mn was trapped in single vesicles within the Golgi apparatus. Our results confirm the role of SLC30A10 in Mn efflux and the accumulation of Mn in cells expressing the disease-causing SLC30A10-Δ105-107 mutation. Moreover, we identified suborganelle Golgi nanovesicles as the main compartment of Mn accumulation in SLC30A10 mutants, suggesting interactions with the vesicular trafficking machinery as a cause of the disease.


Asunto(s)
Proteínas de Transporte de Catión/genética , Aparato de Golgi/metabolismo , Mutación/genética , Trastornos Parkinsonianos/genética , Proteínas de Transporte de Catión/metabolismo , Aparato de Golgi/genética , Humanos , Manganeso/metabolismo , Síndromes de Neurotoxicidad/genética , Síndromes de Neurotoxicidad/metabolismo , Trastornos Parkinsonianos/metabolismo , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología
10.
Toxicol Lett ; 301: 157-167, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30476537

RESUMEN

Gadolinium deposition in tissue is linked to nephrogenic systemic fibrosis (NSF): a rare disorder occurring in patients with severe chronic kidney disease and associated with administration of Gd-based contrast agents (GBCAs) for Magnetic Resonance Imaging (MRI). It is suggested that the GBCAs prolonged permanence in blood in these patients may result in a Gd precipitation in peripheral or central organs, where it initiates a fibrotic process. In this study we investigated new sites of retention/precipitation of Gd in a mouse model of renal disease (5/6 nephrectomy) receiving two doses (closely after each other) of a linear GBCA. Two commercial GBCAs (Omniscan® and Magnevist®) were administered at doses slightly higher than those used in clinical practice (0.7 mmol/kg body weight, each). The animals were sacrificed one month after the last administration and the explanted organs (kidney, liver, femur, dorsal skin, teeth) were analysed by X-ray fluorescence (XRF) at two synchrotron facilities. The XRF analysis with a millimetre-sized beam at the SYRMEP beamline (Elettra, Italy) produced no detectable levels of Gd in the examined tissues, with the notable exception of the incisors of the nephrectomised mice. The XRF analyses at sub-micron resolution performed at ID21 (ESRF, France) allowed to clearly localize Gd in the periodontal ligaments of teeth both from Omniscan® and Magnevist® treated nephrectomised mice. The latter results were further confirmed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The study prompts that prolonged permanence of GBCAs in blood may result in Gd retention in this particular muscular tissue, opening possibilities for diagnostic applications at this level when investigating Gd-related toxicities.


Asunto(s)
Medios de Contraste/farmacocinética , Gadolinio/farmacocinética , Ligamento Periodontal/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Gadolinio DTPA/farmacocinética , Imagen por Resonancia Magnética , Ratones , Dermopatía Fibrosante Nefrogénica/inducido químicamente , Dermopatía Fibrosante Nefrogénica/patología , Ligamento Periodontal/metabolismo , Insuficiencia Renal/inducido químicamente , Insuficiencia Renal/patología , Distribución Tisular
11.
Reprod Biomed Online ; 37(2): 153-162, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29802069

RESUMEN

RESEARCH QUESTION: Does synchrotron X-ray fluorescence (XRF) provide novel chemical information for the evaluation of human ovarian tissue cryopreservation protocols? DESIGN: Tissues from five patients undergoing laparoscopic surgery for benign gynaecological conditions were fixed for microscopic analysis either immediately or after cryopreservation. After fixation, fresh and slowly frozen samples were selected by light microscopy and transmission electron microscopy, and subsequently analysed with synchrotron XRF microscopy at different incident energies. RESULTS: The distributions of elements detected at 7.3 keV (S, P, K, Cl, Fe, and Os) and 1.5 keV (Na and Mg) were related to the changes revealed by light microscopy and transmission electron microscopy analyses. The light elements showed highly informative findings. The S distribution was found to be an indicator of extracellular component changes in the stromal tissues of the freeze-stored samples, further revealed by the transmission electron microscopy analyses. Low-quality follicles, frequent in the freeze-thawed tissues, showed a high Na level in the ooplasm. On the contrary, good-quality follicles were detected by a homogeneous Cl distribution. The occurrence of vacuolated follicles increased after cryopreservation, and the XRF analyses showed that the vacuolar structures contained mainly Cl and Na. CONCLUSIONS: The study demonstrates that elemental imaging techniques, particularly revealing the distribution of light elements, could be useful in establishing new cryopreservation protocols.


Asunto(s)
Criopreservación/métodos , Preservación de Órganos/métodos , Ovario/ultraestructura , Femenino , Humanos , Microscopía Electrónica de Transmisión , Folículo Ovárico/ultraestructura
12.
Connect Tissue Res ; 59(sup1): 67-73, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29745812

RESUMEN

Avian eggshells are composed of several layers made of organic compounds and a mineral phase (calcite), and the general structure is basically the same in all species. A comparison of the structure, crystallography, and chemical composition shows that despite an overall similarity, each species has its own structure, crystallinity, and composition. Eggshells are a perfect example of the crystallographic versus biological concept of the formation and growth mechanisms of calcareous biominerals: the spherulitic-columnar structure is described as "a typical case of competitive crystal growth", but it is also said that the eggshell matrix components regulate eggshell mineralization. Electron back scattered diffraction (EBSD) analyses show that the crystallinity differs between different species. Nevertheless, the three layers are composed of rounded granules, and neither facets nor angles are visible. In-situ analyses show the heterogeneous distribution of chemical elements throughout the thickness of single eggshell. The presence of organic matrices other than the outer and inner membranes in eggshells is confirmed by thermograms and infrared spectrometry, and the differences in quality and quantity depend on the species. Thus, as in other biocrystals, crystal growth competition is not enough to explain these differences, and there is a strong biological control of the eggshell secretion.


Asunto(s)
Biomineralización , Aves , Carbonato de Calcio/química , Cáscara de Huevo/química , Animales , Especificidad de la Especie
13.
Sci Rep ; 8(1): 706, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29335462

RESUMEN

Carbon nanotubes (CNTs) are promising products in industry and medicine, but there are several human health concerns since their fibrous structure resembles asbestos. The presence of transition metals, mainly iron, in the fibres seems also implicated in the pathogenetic mechanisms. To unravel the role of iron at mesothelial level, we compared the chemical changes induced in MeT-5A cells by the exposure to asbestos (crocidolite) or CNTs at different content of iron impurities (raw-SWCNTs, purified- and highly purified-SWCNTs). We applied synchrotron-based X-Ray Fluorescence (XRF) microscopy and soft X-ray imaging (absorption and phase contrast images) to monitor chemical and morphological changes of the exposed cells. In parallel, we performed a ferritin assay. X-ray microscopy imaging and XRF well localize the crocidolite fibres interacting with cells, as well as the damage-related morphological changes. Differently, CNTs presence could be only partially evinced by low energy XRF through carbon distribution and sometimes iron co-localisation. Compared to controls, the cells treated with raw-SWCNTs and crocidolite fibres showed a severe alteration of iron distribution and content, with concomitant stimulation of ferritin production. Interestingly, highly purified nanotubes did not altered iron metabolism. The data provide new insights for possible CNTs effects at mesothelial/pleural level in humans.


Asunto(s)
Asbesto Crocidolita/toxicidad , Células Epiteliales/efectos de los fármacos , Hierro/toxicidad , Microscopía Fluorescente , Nanotubos de Carbono/toxicidad , Línea Celular , Células Epiteliales/química , Células Epiteliales/citología , Humanos
14.
Nanotoxicology ; 11(4): 484-495, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28358292

RESUMEN

Due to the growing commercial applications of manufactured nanoparticles (NPs), toxicological studies on NPs, especially during the critical window of development, are of major importance. The aim of the study was to assess the impact of respiratory exposure to metallic and metal oxide NPs during pregnancy on lung development of the offspring and to determine the key parameters involved in lung alterations. Pregnant mice were exposed to weekly doses of 100 µg (total dose 300 µg) of titanium dioxide (TiO2), cerium oxide (CeO2), silver (Ag) NPs or saline solution by nonsurgical intratracheal instillation. The offspring lungs were analyzed at different stages of lung development: fetal stage (gestational day 17.5), pulmonary alveolarization (post-delivery day 14.5) and lung maturity (post-delivery day 49.5). Regardless of the type of NP, maternal exposure during gestation induced long-lasting impairment of lung development of the offspring. This effect was accompanied by: i) decreased placental efficiency together with the presence of NPs in placenta, ii) no increase of inflammatory mediators present in amniotic fluid, placenta or offspring lungs and iii) decreased pulmonary expression of vascular endothelial growth factor-α (VEGF-α) and matrix metalloproteinase 9 (MMP-9) at the fetal stage, and fibroblast growth factor-18 (FGF-18) at the alveolarization stage. Respiratory exposure to metallic NPs during pregnancy induces stereotyped impairment of lung development with a lasting effect in adult mice, independently of the chemical nature of the NP.


Asunto(s)
Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Exposición Materna/efectos adversos , Nanopartículas del Metal/toxicidad , Organogénesis/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Contaminantes Atmosféricos/farmacocinética , Contaminantes Atmosféricos/toxicidad , Animales , Cerio/toxicidad , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Pulmón/embriología , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Placenta/efectos de los fármacos , Placenta/metabolismo , Embarazo , Plata/metabolismo , Titanio/toxicidad , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Microsc Microanal ; 22(5): 1062-1071, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27619825

RESUMEN

Asbestos bodies are the histological hallmarks of asbestos exposure. Both conventional and advanced techniques are used to evaluate abundance and composition in histological samples. We previously reported the possibility of using synchrotron X-ray fluorescence microscopy (XFM) for analyzing the chemical composition of asbestos bodies directly in lung tissue samples. Here we applied a high-performance synchrotron X-ray fluorescence (XRF) set-up that could allow new protocols for fast monitoring of the occurrence of asbestos bodies in large histological sections, improving investigation of the related chemical changes. A combination of synchrotron X-ray transmission and fluorescence microscopy techniques at different energies at three distinct synchrotrons was used to characterize asbestos in paraffinated lung tissues. The fast chemical imaging of the XFM beamline (Australian Synchrotron) demonstrates that asbestos bodies can be rapidly and efficiently identified as co-localization of high calcium and iron, the most abundant elements of these formations inside tissues (Fe up to 10% w/w; Ca up to 1%). By following iron presence, we were also able to hint at small asbestos fibers in pleural spaces. XRF at lower energy and at higher spatial resolution was afterwards performed to better define small fibers. These analyses may predispose for future protocols to be set with laboratory instruments.


Asunto(s)
Amianto/química , Asbestosis/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Pleura/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Australia , Exposición a Riesgos Ambientales , Humanos , Masculino , Microscopía Fluorescente , Rayos X
16.
J Struct Biol ; 196(2): 206-222, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27612582

RESUMEN

During premolt, crayfish develop deposits of calcium ions, called gastroliths, in their stomach wall. The stored calcium is used for the calcification of parts of the skeleton regularly renewed for allowing growth. Structural and molecular analyses of gastroliths have been primarily performed on three crayfish species, Orconectes virilis, Procambarus clarkii, and more recently, Cherax quadricarinatus. We have performed high-resolution analyses of gastroliths from the native noble crayfish, Astacus astacus, focusing on the microstructure, the mineralogical and elemental composition and distribution in a comparative perspective. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) observations showed a classical layered microstructure composed of 200-nm diameter granules aligned along fibers. These granules are themselves composed of agglomerated nanogranules of 50nm-mean diameters. Denser regions of bigger fused granules are also present. Micro-Raman spectroscopy show that if A. astacus gastroliths, similarly to the other analyzed gastroliths, are mainly composed of amorphous calcium carbonate (ACC), they are also rich in amorphous calcium phosphate (ACP). The presence of a carotenoid pigment is also observed in A. astacus gastrolith contrary to C. quadricarinatus. Energy-dispersive X-ray spectroscopy (EDX) analyses demonstrate the presence of minor elements such as Mg, Sr, Si and P. The distribution of this last element is particularly heterogeneous. X-ray absorption near edge structure spectroscopy (XANES) reveals an alternation of layers more or less rich in phosphorus evidenced in the mineral phase as well as in the organic matrix in different molecular forms. Putative functions of the different P-comprising molecules are discussed.


Asunto(s)
Astacoidea/anatomía & histología , Calcificación Fisiológica , Calcio/metabolismo , Animales , Astacoidea/química , Carbonato de Calcio/análisis , Fosfatos de Calcio/análisis
17.
Sci Rep ; 6: 29678, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27411781

RESUMEN

We recently developed the synthesis of ultrasmall gadolinium-based nanoparticles (GBN), (hydrodynamic diameter <5 nm) characterized by a safe behavior after intravenous injection (renal clearance, preferential accumulation in tumors). Owing to the presence of gadolinium ions, GBN can be used as contrast agents for magnetic resonance imaging (MRI) and as radiosensitizers. The attempt to determine the most opportune delay between the intravenous injection of GBN and the irradiation showed that a very low content of radiosensitizing nanoparticles in the tumor area is sufficient (0.1 µg/g of particles, i.e. 15 ppb of gadolinium) for an important increase of the therapeutic effect of irradiation. Such a promising and unexpected result is assigned to a suited distribution of GBN within the tumor, as revealed by the X-ray fluorescence (XRF) maps.


Asunto(s)
Gadolinio/administración & dosificación , Gliosarcoma/radioterapia , Nanopartículas/administración & dosificación , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Animales , Línea Celular , Medios de Contraste/administración & dosificación , Imagen por Resonancia Magnética/métodos , Masculino , Ratas , Ratas Endogámicas F344 , Rayos X
18.
Anal Chem ; 88(7): 3826-35, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26959687

RESUMEN

Here, we show results on X-ray absorption near edge structure spectroscopy in both transmission and X-ray fluorescence full-field mode (FF-XANES) at the calcium K-edge on human bone tissue in healthy and diseased conditions and for different tissue maturation stages. We observe that the dominating spectral differences originating from different tissue regions, which are well pronounced in the white line and postedge structures are associated with polarization effects. These polarization effects dominate the spectral variance and must be well understood and modeled before analyzing the very subtle spectral variations related to the bone tissue variations itself. However, these modulations in the fine structure of the spectra can potentially be of high interest to quantify orientations of the apatite crystals in highly structured tissue matrices such as bone. Due to the extremely short wavelengths of X-rays, FF-XANES overcomes the limited spatial resolution of other optical and spectroscopic techniques exploiting visible light. Since the field of view in FF-XANES is rather large the acquisition times for analyzing the same region are short compared to, for example, X-ray diffraction techniques. Our results on the angular absorption dependence were verified by both site-matched polarized Raman spectroscopy, which has been shown to be sensitive to the orientation of bone building blocks and by mathematical simulations of the angular absorbance dependence. As an outlook we further demonstrate the polarization based assessment of calcium-containing crystal orientation and specification of calcium in a beta-tricalcium phosphate (ß-Ca3(PO4)2 scaffold implanted into ovine bone. Regarding the use of XANES to assess chemical properties of Ca in human bone tissue our data suggest that neither the anatomical site (tibia vs jaw) nor pathology (healthy vs necrotic jaw bone tissue) affected the averaged spectral shape of the XANES spectra.


Asunto(s)
Calcio/química , Hueso Cortical/química , Minerales/química , Espectroscopía de Absorción de Rayos X , Fosfatos de Calcio/química , Simulación por Computador , Fluorescencia , Humanos , Espectrometría Raman , Rayos X
19.
Microsc Microanal ; 22(1): 22-38, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26818557

RESUMEN

The crayfish Cherax quadricarinatus stores calcium ions, easily mobilizable after molting, for calcifying parts of the new exoskeleton. They are chiefly stored as amorphous calcium carbonate (ACC) during each premolt in a pair of gastroliths synthesized in the stomach wall. How calcium carbonate is stabilized in the amorphous state in such a biocomposite remains speculative. The knowledge of the microstructure at the nanometer level obtained by field emission scanning electron microscopy and atomic force microscopy combined with scanning electron microscopy energy-dispersive X-ray spectroscopy, micro-Raman and X-ray absorption near edge structure spectroscopy gave relevant information on the elaboration of such an ACC-stabilized biomineral. We observed nanogranules distributed along chitin-protein fibers and the aggregation of granules in thin layers. AFM confirmed the nanolevel structure, showing granules probably surrounded by an organic layer and also revealing a second level of aggregation as described for other crystalline biominerals. Raman analyses showed the presence of ACC, amorphous calcium phosphate, and calcite. Elemental analyses confirmed the presence of elements like Fe, Na, Mg, P, and S. P and S are heterogeneously distributed. P is present in both the mineral and organic phases of gastroliths. S seems present as sulfate (probably as sulfated sugars), sulfonate, sulfite, and sulfoxide groups and, in a lesser extent, as sulfur-containing amino acids.


Asunto(s)
Astacoidea/química , Carbonato de Calcio/análisis , Fosfatos de Calcio/análisis , Estómago/química , Estómago/ultraestructura , Animales , Quitina/análisis , Sustancias Macromoleculares/análisis , Microscopía de Fuerza Atómica , Proteínas/análisis , Análisis Espectral
20.
Sci Rep ; 5: 12129, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26159651

RESUMEN

Environmental and occupational inhalants may induce a large number of pulmonary diseases, with asbestos exposure being the most risky. The mechanisms are clearly related to chemical composition and physical and surface properties of materials. A combination of X-ray fluorescence (µXRF) and Fourier Transform InfraRed (µFTIR) microscopy was used to chemically characterize and compare asbestos bodies versus environmental particulates (anthracosis) in lung tissues from asbestos exposed and control patients. µXRF analyses revealed heterogeneously aggregated particles in the anthracotic structures, containing mainly Si, K, Al and Fe. Both asbestos and particulates alter lung iron homeostasis, with a more marked effect in asbestos exposure. µFTIR analyses revealed abundant proteins on asbestos bodies but not on anthracotic particles. Most importantly, the analyses demonstrated that the asbestos coating proteins contain high levels of ß-sheet structures. The occurrence of conformational changes in the proteic component of the asbestos coating provides new insights into long-term asbestos effects.


Asunto(s)
Amianto/efectos adversos , Asbestosis/patología , Pulmón/efectos de los fármacos , Pulmón/patología , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pliegue de Proteína , Estructura Secundaria de Proteína/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA