Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202401344, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771916

RESUMEN

π­Conjugated materials are highly attractive owing to their unique optical and electronic properties. Covalent organic frameworks (COFs) offer a great opportunity for precise arrangement of building units in a π-conjugated crystalline matrix and tuning of the properties through choice of functionalities or post-synthetic modification. With this review, we aim at summarizing both the most representative as well as emerging strategies for the synthesis of π-conjugated COFs. We give examples of direct synthesis methods with large, π-extended building blocks. COFs featuring fully conjugated linkages such as vinylene, pyrazine, and azole are discussed. Then, post-synthetic modification methods that result in the extension of the COF p-system are reviewed. Throughout, mechanistic insights are presented when available. In the context of their utilization as film devices, we conduct a concise survey of the prominent COF layer deposition techniques reported and their aptness for the deposition of fused aromatic systems.

2.
Nanomaterials (Basel) ; 13(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37446436

RESUMEN

During the last few decades, major advances have been made in photovoltaic systems based on Cu(In,Ga)Se2 chalcopyrite. However, the most efficient photovoltaic cells are processed under high-energy-demanding vacuum conditions. To lower the costs and facilitate high-throughput production, printing/coating processes are proving to be effective solutions. This work combined printing, coating, and chemical bath deposition processes of photoabsorber, buffer, and transparent conductive layers for the development of solution-processed photovoltaic systems. Using a sustainable approach, all inks were formulated using water and ethanol as solvents. Screen printing of the photoabsorber on fluorine-doped tin-oxide-coated glass followed by selenization, chemical bath deposition of the cadmium sulfide buffer, and final sputtering of the intrinsic zinc oxide and aluminum-doped zinc oxide top conductive layers delivered a 6.6% maximum efficiency solar cell, a record for screen-printed Cu(In,Ga)Se2 solar cells. On the other hand, the all-non-vacuum-processed device with spray-coated intrinsic zinc-oxide- and tin-doped indium oxide top conductive layers delivered a 2.2% efficiency. The given approaches represent relevant steps towards the fabrication of sustainable and efficient Cu(In,Ga)Se2 solar cells.

3.
Anal Chim Acta ; 1267: 341357, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37257973

RESUMEN

BACKGROUND: Ready-to-eat products, such as leafy greens, must be carefully controlled as they are directly consumed without any treatment to reduce the presence of potential pathogens. Food industries, especially those that process products with short shelf-life, demand rapid detection of foodborne pathogens such as Shiga Toxin-producing Escherichia coli (STEC). In this sense, molecular methods can fulfill both requirements of turnaround time and consumer safety. The most popular rapid methods are those based on real-time PCR (qPCR) however, vegetables contain inhibitory compounds that may inhibit the amplification reaction thus, there is a need for novel sample preparation protocols. RESULTS: In the current study, a low-cost sample treatment based on sequential filtration steps was developed. This protocol was combined with covalent organic frameworks (COFs), and compared against a chelating resin, to evaluate their performance by multiplex qPCR targeting the major virulence genes of STEC, namely stx1, stx2, and eae, along with the rfbE for the specific identification of serogroup O157 due to its particularly high incidence, and an Internal Amplification Control to assess reaction inhibition. The optimized sample treatment effectively removed vegetable qPCR inhibitory compounds, and it was possible to detect STEC in spiked ready-to-eat salad samples in one working day, roughly 5 h, with an LOD50 of 8.7 CFU/25 g with high diagnostic sensitivity and specificity. The method was also assessed in samples with cold-stressed bacteria with good results, further demonstrating its applicability. SIGNIFICANCE: It was demonstrated for the first time that COFs are suitable for DNA extraction and purification. In addition to this, due to the tunable nature of these materials, it is envisioned that future modifications in terms of pore size or combination with magnetic materials, will allow to further improve their performance. In addition to this, the rapid and low-cost sample treatment protocol developed demonstrated suitable for the rapid screening of STEC vegetable samples.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Estructuras Metalorgánicas , Ensaladas , Escherichia coli Shiga-Toxigénica , Humanos , Escherichia coli Shiga-Toxigénica/genética , Microbiología de Alimentos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Heces/microbiología
4.
Angew Chem Int Ed Engl ; 62(30): e202302872, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37141015

RESUMEN

A three-component synthesis methodology is described for the formation of covalent organic frameworks (COFs) containing extended aromatics. Notably, this approach enables synthesis of the building blocks and COF along parallel reaction landscapes, on a similar timeframe. The use of fragmental building block components, namely pyrene dione diboronic acid as aggregation-inducing COF precursor and the diamines o-phenylenediamine (Ph), 2,3-diaminonaphthalene (Naph), or (1R,2R)-(+)-1,2-diphenylethylenediamine (2Ph) as extending functionalization units in conjunction with 2,3,6,7,10,11-hexahydroxytriphenylene, resulted in the formation of the corresponding pyrene-fused azaacene, i.e., Aza-COF series with full conversion of the dione moiety, long-range order, and high surface area. In addition, the novel three-component synthesis was successfully applied to produce highly crystalline, oriented thin films of the Aza-COFs with nanostructured surfaces on various substrates. The Aza-COFs exhibit light absorption maxima in the blue spectral region, and each Aza-COF presents a distinct photoluminescence profile. Transient absorption measurements of Aza-Ph- and Aza-Naph-COFs suggest ultrafast relaxation dynamics of excited-states within these COFs.

5.
J Hazard Mater ; 452: 131247, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36963199

RESUMEN

Saxitoxin (STX), the most widely distributed neurotoxin in marine waters and emerging cyanotoxin of concern in freshwaters, causes paralytic shellfish poisoning in humans upon consumption of contaminated shellfish. To allow for the efficient monitoring of this biotoxin, it is of high importance to find high-affinity materials for its adsorption. Herein, we report the design and synthesis of a covalent organic polymer for the efficient adsorption of STX. Two ß-keto-enamine-based materials were prepared by self-assembly of 2,4,6-triformylphloroglucinol (Tp) with 2,5-diaminobenzoic acid (Pa-COOH) to give TpPa-COOH and with 2,5-diaminotoluene (Pa-CH3) to give TpPa-CH3. The carboxylic acid functionalized TpPa-COOH outperformed the methyl-bearing counterpart TpPa-CH3 by an order of magnitude despite the higher long-range order and surface area of the latter. The adsorption of STX by TpPa-COOH was fast with equilibrium reached within 1 h, and the Langmuir adsorption model gave a calculated maximum adsorption capacity, Qm, of 5.69 mg g-1, making this material the best reported adsorbent for this toxin. More importantly, the prepared TpPa-COOH also showed good reusability and high recovery rates for STX in natural freshwater, thereby highlighting the material as a good candidate for the extraction and pre-concentration of STX from aquatic environments.


Asunto(s)
Toxinas Marinas , Saxitoxina , Humanos , Adsorción , Neurotoxinas/análisis , Mariscos/análisis
6.
Chem Commun (Camb) ; 58(86): 12074-12077, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36218330

RESUMEN

The reactivity of the novel Re(I) catalyst [Re(C12Anth-py2)(CO)3Br] is modulated by its interactions with the covalent organic framework (COF) TFB-BD. The complex catalyzes either reductive etherification, oxidative esterification, or transfer hydrogenation depending on its local environment (embedded in TFB-BD, in homogeneous solution or co-incubated with TFB-BD, respectively). The results highlight that COFs can drastically modulate the reactivity of homogeneous catalysts.

7.
Artículo en Inglés | MEDLINE | ID: mdl-35545871

RESUMEN

Oxide perovskites have attracted great interest as materials for energy conversion due to their stability and structural tunability. La-based perovskites of 3d-transition metals have demonstrated excellent activities as electrocatalysts in water oxidation. Herein, we report the synthesis route to La-based perovskites using an environmentally friendly deep eutectic solvent (DES) consisting of choline chloride and malonic acid. The DES route affords phase-pure crystalline materials on a gram scale and results in perovskites with high electrocatalytic activity for oxygen evolution reaction. A convenient, fast, and scalable synthesis proceeds via assisted metathesis at a lower temperature as compared to traditional solid-state methods. Among LaCoO3, LaMn0.5Ni0.5O3, and LaMnO3 perovskites prepared via the DES route, LaCoO3 was established to be the best-performing electrocatalyst for water oxidation in alkaline medium at 0.25 mg cm-2 mass loading. LaCoO3 exhibits current densities of 10, 50, and 100 mA cm-2 at respective overpotentials of approximately 390, 430, and 470 mV, respectively, and features a Tafel slope of 55.8 mV dec-1. The high activity of LaCoO3 as compared to the other prepared perovskites is attributed to the high concentration of oxygen vacancies in the LaCoO3 lattice, as observed by high-resolution transmission electron microscopy. An intrinsically high concentration of O vacancies in the LaCoO3 synthesized via the DES route is ascribed to the reducing atmosphere attained upon thermal decomposition of the DES components. These findings will contribute to the preparation of highly active perovskites for various energy applications.

8.
Anal Chim Acta ; 1191: 339293, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35033243

RESUMEN

In this work, a new analytical approach based on ultrasound-assisted dispersive (micro)solid phase extraction (US-D-µSPE) using TpBD-Me2 covalent organic framework (COF) as adsorbent for simple, rapid and selective fluorescent determination of two polycyclic synthetic fragrances in seawater, i.e., 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta-(γ)-2-benzopyran (HHCB), branded galaxolide®, and 7-acetyl-1,1,3,4,4,6-hexamethyltetralin (AHTN), branded tonalide®, is proposed. Different parameters involved in both adsorption and desorption steps were optimized in order to obtain the best results. High adsorption efficiencies in the range of 91.2-97.8% were achieved for both analytes. Desorption efficiencies of ∼98% for AHTN and HHCB were obtained using methanol as solvent, rendering the material recyclable with merely minor losses in adsorption efficiency after five consecutive cycles of adsorption/desorption. Limits of detection (LODs) were 0.082 µg L-1 and 0.070 µg L-1 for AHTN and HHCB, respectively. The proposed method was successfully applied for the analysis of seawater without the need for a previous sample treatment, e.g., pH adjustment. Recoveries in the range of 90.4-101.2% with a relative standard deviation of 5.8% were obtained for both fragrances. The results proved the great capacity of TpBD-Me2 COF for the selective sorption of polycyclic fragrances in combination with fluorescent detection, being highly promising for application to environmental monitoring of other emerging organic pollutants.


Asunto(s)
Estructuras Metalorgánicas , Perfumes , Contaminantes Químicos del Agua , Odorantes , Agua de Mar , Extracción en Fase Sólida , Contaminantes Químicos del Agua/análisis
9.
Dalton Trans ; 50(45): 16819-16828, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34775504

RESUMEN

Environmentally friendly synthesis of Cu(In,Ga)Se2 (CIGS) nanoparticles (NPs) is pivotal for producing sustainable photocatalytic compounds to be applied in the remediation of contaminants of emerging concern from water. To this end, we herein report an aqueous synthesis of CIGS NPs, followed by annealing, to give access to phase-pure CIGS crystals with chalcopyrite structure and no signs of secondary phases. Morphological and compositional characterization revealed NPs with an average size of 10-35 nm and uniform distribution of Cu, In, Ga, and Se elements. In addition, the first aqueous large-scale synthesis of CIGS NPs is developed by up-scaling the synthesis procedure, resulting in 5 g of highly crystalline nanoparticles exhibiting an ideal optical band gap of 1.14 eV. The as-synthesized NPs proved the ability to remove 71 and 83% of a contaminant of emerging concern, ciprofloxacin (CIP), under ultraviolet (UV) and visible (Vis) radiations, respectively.


Asunto(s)
Ciprofloxacina/química , Cobre/química , Galio/química , Indio/química , Nanopartículas del Metal/química , Selenio/química , Catálisis , Microscopía Electrónica de Transmisión de Rastreo , Procesos Fotoquímicos , Termogravimetría , Agua/química , Difracción de Rayos X
10.
Chemosphere ; 278: 130364, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33831685

RESUMEN

Herein, we demonstrate, for the first time, that covalent organic frameworks (COFs) can be efficient adsorbents for the screening of pharmaceuticals in real water samples, obtaining highly representative data on their occurrence and avoiding the cost of carrying high volume samples and tedious and costly clean-up and preconcentration steps. Of the 23 pharmaceuticals found present in the water samples from the Tagus river estuary using state-of-the-art solid-phase extraction (SPE), 22 were also detected (adsorbed and recovered for analysis) using a COF as the adsorbent material with adsorption efficiency of over 80% for nearly all compounds. In specific cases, acidification of the water samples was identified to lead to a dramatic loss of adsorption efficiency, underlining the effect of sample pre-treatment on the results. The COF efficiently adsorbed (>80%) 19 pharmaceuticals without acid treatment of the sample, highlighting the potential of this class of materials for representative in situ passive adsorption of pharmaceuticals, making this material suitable for being used in water monitoring programs as a simple and cost-efficient sample preparation procedure. In the case of α-hydroxyalprazolam and diclofenac, the COF outperformed the SPE procedure in the recovery efficiency. Although further efforts should be made in tailoring the desorption of the pharmaceuticals from the COF by using different solvents or solvent mixtures, we propose COFs as convenient adsorbent for broad-scope screening and as an efficient adsorbent material to target specific classes of pharmaceuticals. To the best of our knowledge, this is the first study on the use of COFs for contaminant screening in real, naturally contaminated water samples.


Asunto(s)
Estructuras Metalorgánicas , Preparaciones Farmacéuticas , Adsorción , Estuarios , Extracción en Fase Sólida
11.
ACS Appl Mater Interfaces ; 13(13): 15053-15063, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33760592

RESUMEN

Microcystins (MCs), produced by Microcystis sp, are the most commonly detected cyanotoxins in freshwater, and due to their toxicity, worldwide distribution, and persistence in water, an improvement in the monitoring programs for their early detection and removal from water is necessary. To this end, we investigate the performance of three covalent organic frameworks (COFs), TpBD-(CF3)2, TpBD-(NO2)2, and TpBD-(NH2)2, for the adsorption of the most common and/or toxic MC derivatives, MC-LR, MC-RR, MC-LA, and MC-YR, from water. While MC-LR and MC-YR can be efficiently adsorbed using all three COF derivatives, high adsorption efficiencies were found for the most lipophilic toxin, MC-LA, with TpBD-(NH2)2, and the most hydrophilic one, MC-RR, with TpBD-(NO2). Theoretical calculations revealed that MC-LA and MC-RR have a tendency to be located mainly on the COF surface, interacting through hydrogen bonds with the amino and nitro functional groups of TpBD-(NH2)2 and TpBD-(NO2)2, respectively. TpBD-(NO2)2 outperforms the adsorbent materials reported for the capture of MC-RR, resulting in an increase in the maximum adsorption capacity by one order of magnitude. TpBD-(NH2)2 is reported as the first efficient adsorbent material for the capture of MC-LA. Large differences in desorption efficiencies were observed for the MCs with different COFs, highlighting the importance of COF-adsorbate interactions in the material recovery. Herein we show that efficient capture of these toxins from water can be achieved through the proper selection of the COF material. More importantly, this study demonstrates that by careful choice of COF functionalities, specific compounds can be targeted or excluded from a group of analogues, providing insight into the design of more efficient and selective adsorbent materials.


Asunto(s)
Estructuras Metalorgánicas/química , Microcistinas/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Microcystis/química , Modelos Moleculares , Purificación del Agua/métodos
12.
Molecules ; 25(22)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33218211

RESUMEN

In the recent years, composite materials containing covalent organic frameworks (COFs) have raised increasing interest for analytical applications. To date, various synthesis techniques have emerged that allow for the preparation of crystalline and porous COF composites with various materials. Herein, we summarize the most common methods used to gain access to crystalline COF composites with magnetic nanoparticles, other oxide materials, graphene and graphene oxide, and metal nanoparticles. Additionally, some examples of stainless steel, polymer, and metal-organic framework composites are presented. Thereafter, we discuss the use of these composites for chromatographic separation, environmental remediation, and sensing.


Asunto(s)
Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/síntesis química , Restauración y Remediación Ambiental , Grafito/química , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Estructuras Metalorgánicas/ultraestructura , Publicaciones
13.
Molecules ; 25(14)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650603

RESUMEN

Ibuprofen is one of the most widely used pharmaceuticals, and due to its inefficient removal by conventional wastewater treatment, it can be found in natural surface waters at high concentrations. Recently, we demonstrated that the TpBD-(CF3)2 covalent organic framework (COF) can adsorb ibuprofen from ultrapure water with high efficiency. Here, we investigate the performance of the COF for the extraction of ibuprofen from natural water samples from a lake, river, and estuary. In general, the complexity of the natural water matrix induced a reduction in the adsorption efficiency of ibuprofen as compared to ultrapure water. The best performance, with over 70% adsorption efficiency, was found in lake water, the sample which featured the lowest pH. According to the theoretical calculations, ibuprofen more favorably interacts with the COF pores in the protonated form, which could partially account for the enhanced adsorption efficiency found in lake water. In addition, we explored the effect of the presence of competing pharmaceuticals, namely, acetaminophen and phenobarbital, on the ibuprofen adsorption as binary mixtures. Acetaminophen and phenobarbital were adsorbed by TpBD-(CF3)2 with low efficiency and their presence led to an increase in ibuprofen adsorption in the binary mixtures. Overall, this study demonstrates that TpBD-(CF3)2 is an efficient adsorbent for the extraction of ibuprofen from natural waters as well.


Asunto(s)
Ibuprofeno/aislamiento & purificación , Estructuras Metalorgánicas/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua , Adsorción , Ibuprofeno/química , Fenobarbital/química , Fenobarbital/aislamiento & purificación , Contaminantes Químicos del Agua/química
14.
Nanoscale ; 11(13): 6072-6079, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30869704

RESUMEN

A novel procedure for the preparation of magnetic covalent organic frameworks (COFs) is reported. In situ functionalization of Fe3O4 with dopamine rapidly afforded amino-functionalized magnetic nanoparticles, which after decoration with a COF building block and subsequent COF growth gave access to magnetic composite mTpBD-Me2. The optimized synthesis conditions yielded crystalline and superparamagnetic material with no loss in surface area as compared to bulk COF. The composite material was employed for the first time in magnetic solid-phase extraction of marine biotoxins from seawater with high efficiency, where calculated maximum adsorption capacities of 812 mg g-1 and 830 mg g-1 were found for okadaic acid (OA) and dinophysistoxin-1 (DTX-1), respectively, corresponding to an increase of ∼500-fold for OA and ∼300-fold for DTX-1 as compared to the commonly used non-magnetic macroporous resins. Nearly quantitative desorption efficiency of both biotoxins was obtained using 2-propanol as solvent, rendering the composite materials recyclable with merely minor losses in adsorption capacity after five consecutive cycles of adsorption/desorption. In addition, retention of crystallinity after the adsorption cycles highlights the stability of the composite in seawater. These results illustrate the great efficiency of the novel material in biotoxin adsorption and show great promise for its application in environmental monitoring programs.


Asunto(s)
Magnetismo , Estructuras Metalorgánicas/química , Ácido Ocadaico/química , Piranos/química , 2-Propanol/química , Adsorción , Dopamina/química , Óxido Ferrosoférrico/química , Cinética , Ácido Ocadaico/aislamiento & purificación , Piranos/aislamiento & purificación , Extracción en Fase Sólida
15.
Chemistry ; 25(26): 6461-6473, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-30653775

RESUMEN

Covalent organic frameworks (COFs) are attractive materials receiving increasing interest in the literature due to their crystallinity, large surface area, and pore uniformity. Their properties can be tailored towards specific applications by judicious design of COF building blocks, giving access to tailor-made pore sizes and surfaces. In this Concept article, developments in the field of COFs that have allowed these materials to be explored for contaminant adsorption are discussed. Strategies to obtain water-stable materials with highly ordered structures and large surface areas are reviewed. Post-synthetic modification approaches, by which pore surfaces can be tuned to target specific contaminants, are described. Recent advances in COF formulations, crucial for future implementation in adsorption devices, are highlighted. At the end, future challenges which need to be addressed to allow for the deployment of COFs for the capture of water contaminants will be discussed.

16.
Chemistry ; 24(42): 10601-10605, 2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-29893500

RESUMEN

Capture of pharmaceutical pollutants from water was studied using a novel fluorine-bearing covalent organic framework TpBD-(CF3 )2 , which showed ibuprofen adsorption capacity of 119 mg g-1 at neutral pH. This value is further enhanced at pH 2, highlighting the potential of this class of materials to serve as adsorbents even under harsh conditions. The adsorbed pharmaceutical can be recovered from TpBD-(CF3 )2 in high yield, offering the option of recycling both the adsorbent and the pharmaceutical. The high efficiency of ibuprofen capture as compared to other less lipophilic pharmaceuticals suggests that COFs can be pre-designed for selective capture of contaminants.

17.
Chemistry ; 24(34): 8624-8631, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29645299

RESUMEN

A versatile iron oxide nanoparticle platform is reported that can be orthogonally functionalized to obtain highly derivatized nanomaterials required for a wide variety of applications, such as drug delivery, targeted therapy, or imaging. Facile functionalization of the nanoparticles with two ligands containing isocyanate moieties allows for high coverage of the surface with maleimide and alkyne groups. As a proof-of-principle, the nanoparticles were subsequently functionalized with a fluorophore as a drug model and with biotin as a targeting ligand towards tumor cells through Diels-Alder and azide-alkyne cycloaddition reactions, respectively. The thermoreversibility of the Diels-Alder product was exploited to induce the on-demand release of the loaded molecules by magnetic hyperthermia. Additionally, the nanoparticles were shown to target cancer cells through in vitro experiments, as analyzed by magnetic resonance imaging.

18.
J Chromatogr A ; 1525: 17-22, 2017 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-29037592

RESUMEN

Phycotoxins, compounds produced by some marine microalgal species, can reach high concentrations in the sea when a massive proliferation occurs, the so-called harmful algal bloom. These compounds are especially dangerous to human health when concentrated in the digestive glands of seafood. In order to generate an early warning system to alert for approaching toxic outbreaks, it is very important to improve monitoring methods of phycotoxins in aquatic ecosystems. Solid-phase adsorption toxin tracking devices reported thus far based on polymeric resins have not been able to provide an efficient harmful algal bloom prediction system due to their low adsorption capabilities. In this work, a water-stable covalent organic framework (COF) was evaluated as adsorbent for the hydrophobic toxin okadaic acid, one of the most relevant marine toxins and the parental compound of the most common group of toxins responsible for the diarrhetic shellfish poisoning. Adsorption kinetics of okadaic acid onto the COF in seawater showed that equilibrium concentration was reached in only 60min, with a maximum experimental adsorption of 61mgg-1. Desorption of okadaic acid from the COF was successful with both 70% ethanol and acetonitrile as solvent, and the COF material could be reused with minor losses in adsorption capacity for three cycles. The results demonstrate that COF materials are promising candidates for solid-phase adsorption in water monitoring devices.


Asunto(s)
Monitoreo del Ambiente/métodos , Floraciones de Algas Nocivas , Estructuras Metalorgánicas/normas , Ácido Ocadaico/química , Adsorción , Ecosistema , Monitoreo del Ambiente/instrumentación , Estructuras Metalorgánicas/química , Agua de Mar/química
19.
Bioconjug Chem ; 28(2): 362-370, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27977143

RESUMEN

Superparamagnetic iron oxide nanoparticles (SPIO-PAA), ultrasmall iron oxide nanoparticles (USPIO-PAA), and glucosamine-modified iron oxide nanoparticles (USPIO-PAA-GlcN) were studied as mesenchymal stem cell (MSCs) labels for cell tracking applications by magnetic resonance imaging (MRI). Pronounced differences were found in the labeling performance of the three samples in terms of cellular dose and labeling efficiency. In combination with polylysine, SPIO-PAA showed nonhomogeneous cell internalization, while for USPIO-PAA no uptake was found. On the contrary, USPIO-PAA-GlcN featured high cellular uptake and biocompatibility, and sensitive detection in both in vitro and in vivo experiments was found by MRI, showing that glucosamine functionalization can be an efficient strategy to increase cell uptake of ultrasmall iron oxide nanoparticles by MSCs.


Asunto(s)
Rastreo Celular/métodos , Nanopartículas de Magnetita/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Animales , Transporte Biológico , Supervivencia Celular/efectos de los fármacos , Nanopartículas de Magnetita/toxicidad , Masculino , Ensayo de Materiales , Tamaño de la Partícula , Ratas , Coloración y Etiquetado
20.
Chem Commun (Camb) ; 52(51): 7986-9, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27257634

RESUMEN

A supramolecular strategy based on strong molecular dipole moments is presented to gain access to covalent organic framework structures with high crystallinity and porosity. Antiparallel alignment of the molecules within the pore walls is proposed to lead to reinforced columnar stacking, thus affording a high-quality material. As a proof of principle, a novel pyrene dione building block was prepared and reacted with hexahydroxytriphenylene to form a boronic ester-linked covalent organic framework. We anticipate the strategy presented herein to be valuable for producing highly defined COF structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA