Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Sci Rep ; 14(1): 14636, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918456

RESUMEN

Centrin1 gene deleted Leishmania donovani parasite (LdCen1-/-) was developed and extensively tested experimentally as an intracellular stage-specific attenuated and immunoprotective live parasite vaccine candidate ex vivo using human PBMCs and in vivo in animals. Here we report manufacturing and pre-clinical evaluation of current Good-Laboratory Practice (cGLP) grade LdCen1-/- parasites, as a prerequisite before proceeding with clinical trials. We screened three batches of LdCen1-/- parasites manufactured in bioreactors under cGLP conditions, for their consistency in genetic stability, attenuation, and safety. One such batch was preclinically tested using human PBMCs and animals (hamsters and dogs) for its safety and protective immunogenicity. The immunogenicity of the CGLP grade LdCen1-/- parasites was similar to one grown under laboratory conditions. The cGLP grade LdCen1-/- parasites were found to be safe and non-toxic in hamsters and dogs even at 3 times the anticipated vaccine dose. When PBMCs from healed visceral leishmaniasis (VL) cases were infected with cGLP LdCen1-/-, there was a significant increase in the stimulation of cytokines that contribute to protective responses against VL. This effect, measured by multiplex ELISA, was greater than that observed in PBMCs from healthy individuals. These results suggest that cGLP grade LdCen1-/- manufactured under cGMP complaint conditions can be suitable for future clinical trials.


Asunto(s)
Eliminación de Gen , Leishmania donovani , Leishmaniasis Visceral , Vacunas Atenuadas , Leishmania donovani/inmunología , Leishmania donovani/genética , Animales , Humanos , Perros , Vacunas Atenuadas/inmunología , Leishmaniasis Visceral/prevención & control , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Cricetinae , Vacunas contra la Leishmaniasis/inmunología , Vacunas contra la Leishmaniasis/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Leucocitos Mononucleares/inmunología , Femenino
2.
Microbiol Spectr ; 12(6): e0402623, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38712926

RESUMEN

Post-kala-azar dermal leishmaniasis (PKDL) patients are a key source of Leishmania donovani parasites, hindering the goal of eliminating visceral leishmaniasis (VL). Monitoring treatment response and parasite susceptibility is essential due to increasing drug resistance. We assessed the drug susceptibility of PKDL isolates (n = 18) from pre-miltefosine (MIL) era (1997-2004) with isolates (n = 16) from the post-miltefosine era (2010-2019) and post-miltefosine treatment relapse isolates (n = 5) towards miltefosine and amphotericin B (AmB) at promastigote stage and towards sodium antimony gluconate (SAG) at amastigote stage. PKDL isolates were examined for mutation in gene-encoding AQP1 transporter, C26882T mutation on chromosome 24, and miltefosine-transporter (MT). PKDL isolates from the post-miltefosine era were significantly more susceptible to SAG than SAG-resistant isolates from the pre-miltefosine era (P = 0.0002). There was no significant difference in the susceptibility of parasites to miltefosine between pre- and post-miltefosine era isolates. The susceptibility of PKDL isolates towards AmB remained unchanged between the pre- and post-miltefosine era. However, the post-miltefosine era isolates had a higher IC50 value towards AmB compared with PKDL relapse isolates. We did not find any association between AQP1 gene sequence variation and susceptibility to SAG, or between miltefosine susceptibility and single nucleotide polymorphisms (SNPs in the MT gene. This study demonstrates that recent isolates of Leishmania have resumed susceptibility to antimonials in vitro. The study also offers significant insights into the intrinsic drug susceptibility of Leishmania parasites over the past two decades, covering the period before the introduction of miltefosine and after its extensive use. IMPORTANCE: Post-kala-azar dermal leishmaniasis (PKDL) patients, a key source of Leishmania donovani parasites, hinder eliminating visceral-leishmaniasis. Assessment of the susceptibility of PKDL isolates to antimony, miltefosine (MIL), and amphotericin-B indicated that recent isolates remain susceptible to antimony, enabling its use with other drugs for treating PKDL.


Asunto(s)
Anfotericina B , Antimonio , Antiprotozoarios , Resistencia a Medicamentos , Leishmania donovani , Leishmaniasis Cutánea , Leishmaniasis Visceral , Fosforilcolina , Humanos , Leishmania donovani/efectos de los fármacos , Leishmania donovani/genética , Leishmania donovani/aislamiento & purificación , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacología , Fosforilcolina/uso terapéutico , Leishmaniasis Visceral/parasitología , Leishmaniasis Visceral/tratamiento farmacológico , Antiprotozoarios/farmacología , Antimonio/farmacología , Antimonio/uso terapéutico , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/tratamiento farmacológico , Resistencia a Medicamentos/genética , Anfotericina B/farmacología , Pruebas de Sensibilidad Parasitaria , Gluconato de Sodio Antimonio/farmacología , Gluconato de Sodio Antimonio/uso terapéutico , Mutación
3.
Microbes Infect ; : 105340, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663721

RESUMEN

Our developed cell division-specific 'centrin' gene deleted Leishmania donovani (LdCen1-/-) the causative parasite of the fatal visceral-leishmaniasis (VL), exhibits a selective growth arrest at the intracellular stage and is anticipated as a live attenuated vaccine candidate against VL. LdCen1-/- immunization in animals has shown increased IFN-γ secreting CD4+ and CD8+ T cells along with protection conferred by a protective proinflammatory immune response. A label-free proteomics approach has been employed to understand the physiology of infection and predict disease interceptors during Leishmania-host interactions. Proteomic modulation after infection of human macrophage cell lines suggested elevated annexin A6, implying involvement in various biological processes such as membrane repair, transport, actin dynamics, cell proliferation, survival, differentiation, and inflammation, thereby potentiating its immunological protective capacity. Additionally, S100A8 and S100A9 proteins, known for maintaining homeostatic balance in regulating the inflammatory response, have been upregulated after infection. The inhibitory clade of serpins, known to inhibit cysteine proteases (CPs), was upregulated in host cells after 48 h of infection. This is reflected in the diminished expression of CPs in the parasites during infection. Such proteome analysis confirms LdCen1-/- efficacy as a vaccine candidate and predicts potential markers in future vaccine development strategies against infectious diseases.

4.
Artículo en Inglés | MEDLINE | ID: mdl-37609737

RESUMEN

Background Increasing urbanisation has led to the occurrence of cutaneous leishmaniasis (CL) in new areas, which was otherwise localised to endemic areas. Healthcare workers should be made aware of this entity to ensure clinical suspicion of CL and investigations needed to confirm CL. The article describes patients seen at a tertiary hospital in Delhi. Aims To establish the utility of the CL Detect Rapid test as a diagnostic tool and the efficacy of Liposomal Amphotericin B (LAmB) for the complete cure of CL patients. Methods Data of patients of CL (n = 16) was retrospectively analysed concerning diagnosis and treatment. Diagnosis rested on histopathology, real-time PCR, and CL Detect Rapid Test. Speciation of the parasite was based on the Internal transcribed spacer-I gene. Patients were treated with LAmB (i.v., 5 mg/kg up to three doses, five days apart). Results A positivity of 81.3% (95%CI, 54.4-96) was observed for CL Detect Rapid test in comparison with 100% (95%CI, 79.4-100.0) for real-time PCR and 43.8% (95%CI, 19.8-70.1) for microscopy/histopathological examination. L. tropica was the infective species in all cases. All the patients treated with LAmB responded to treatment, and 9/10 patients demonstrated complete regression of lesions, while one was lost to follow-up. Limitations It is a retrospective study, and the data includes only confirmed cases of CL at a single centre. Conclusion This study highlights the utility of CL Detect as a promising diagnostic tool and the efficacy of LAmB for the complete cure of CL.


Asunto(s)
Anfotericina B , Antiprotozoarios , Leishmaniasis Cutánea , Humanos , Estudios Retrospectivos , Antiprotozoarios/uso terapéutico , Centros de Atención Terciaria , Leishmaniasis Cutánea/diagnóstico , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/epidemiología , India/epidemiología
5.
Biochim Biophys Acta Mol Cell Res ; 1870(3): 119416, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36623775

RESUMEN

Centrins are cytoskeletal proteins associated with the centrosomes or basal bodies in the eukaryotes. We previously reported the involvement of Centrin 1-3 proteins in cell division in the protozoan parasites Leishmania donovani and Trypanosoma brucei. Centrin4 and 5, unique to such parasites, had never been characterized in Leishmania parasite. In the current study, we addressed the function of centrin4 (LdCen4) in Leishmania. By dominant-negative study, the episomal expression of C-terminal truncated LdCen4 in the parasite reduced the parasite growth. LdCen4 double allele gene deletion by either homologous recombination or CRISPR-Cas9 was not successful in L. donovani. However, CRISPR-Cas9-based deletion of the homologous gene was possible in L. mexicana, which attenuated the parasite growth in vitro, but not ex vivo in the macrophages. LdCen4 also interacts with endogenous and overexpressed LdPOC protein, a homolog of centrin reacting human POC (protein of centriole) in a calcium sensitive manner. LdCen4 and LdPOC binding has also been confirmed through in silico analysis by protein structural docking and validated by co-immunoprecipitation. By immunofluorescence studies, we found that both the proteins share a common localization at the basal bodies. Thus, for the first time, this article describes novel centrin4 and its binding protein in the protozoan parasites.


Asunto(s)
Leishmania donovani , Parásitos , Animales , Humanos , Parásitos/metabolismo , Centriolos/genética , Centriolos/metabolismo , Leishmania donovani/genética , División Celular , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo
6.
Parasitol Int ; 92: 102661, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36049661

RESUMEN

Currently, no licensed vaccine is available for human visceral leishmaniasis (VL), a fatal disease caused by the protozoan parasite Leishmania donovani. Two of our live attenuated L. donovani vaccine candidates, either deleted for Centrin1 (LdCen1-/-) or p27 gene (Ldp27-/-), that display reduced growth in macrophages were studied to be safe, immunogenic and protective against VL in various animal models. This report involves the identification of differentially expressed proteins, their related pathways and its underlying mechanism in the intracellular stage of these parasites, using Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) methods. Out of 50-60 proteins, found to be differentially expressed in these mutant parasites, 36 were found to be common in both the parasites. Such proteins mainly belong to the functional categories viz. metabolic enzymes, chaperones and stress proteins, proteins involved in translation, processing and transport and proteins involved in nucleic acid processing. Proteins known to be host protective, like Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), cytochrome c, calreticulin and those responsible for inducing immune response, namely tubulins, DEAD box RNA helicases, HSP70 and tryparedoxin, have been detected to be modulated in these parasites. Such proteins could be predicted as biomarkers, with further scope of study for their role in growth attenuation. SIGNIFICANCE: This study aims at predicting proteomic biomarkers of Leishmania parasite growth attenuation, that have immunomodulatory role in the disease leishmaniasis. Advanced studies could be helpful in establishing the role of these identified proteins in parasitic virulence and to predict the host interaction at molecular level. Also, these proteins could be exploited as attenuation markers during the development of genetically modified live attenuated parasites as vaccine candidates. These could be cross validated in varied species of Leishmania and other tyrpanosomatids for similar response towards identifying them as universal biomarkers of attenuation.


Asunto(s)
Leishmania donovani , Leishmaniasis Visceral , Animales , Humanos , Leishmaniasis Visceral/prevención & control , Combinación Trimetoprim y Sulfametoxazol , Proteómica , Biomarcadores , Leishmania donovani/genética , Vacunas Atenuadas
7.
Parasitol Res ; 121(11): 3121-3132, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36056959

RESUMEN

In the absence of adequate diagnosis and treatment, leishmaniasis remains a major public health concern on a global scale. Drug resistance remains a key obstacle in controlling and eliminating visceral leishmaniasis. The therapeutic gap due to lack of target-specific medicine and vaccine can be minimized by obtaining parasite's genomic information. This study compared whole-genome sequence of paromomycin-resistant parasite (K133PMM) developed through in vitro adaptation and selection with sensitive Leishmania clinical isolate (K133WT). We found a large number of upstream and intergenic gene variations in K133PMM. There were 259 single nucleotide polymorphisms (SNPs), 187 insertion-deletion (InDels), and 546 copy number variations (CNVs) identified. Most of the genomic variations were found in the gene's upstream and non-coding regions. Ploidy estimation revealed chromosome 5 in tetrasomy and 6, 9, and 12 in trisomy, uniquely in K133PMM. These contain the genes for protein degradation, parasite motility, autophagy, cell cycle maintenance, and drug efflux membrane transporters. Furthermore, we also observed reduction in ploidy of chromosomes 15, 20, and 23, in the resistant parasite containing mostly the genes for hypothetical proteins and membrane transporters. We chronicled correlated genomic conversion and aneuploidy in parasites and hypothesize that this led to rapid evolutionary changes in response to drug induced pressure, which causes them to become resistant.


Asunto(s)
Variaciones en el Número de Copia de ADN , Leishmania donovani , Cromosomas/genética , Resistencia a Medicamentos , Leishmania donovani/genética , Proteínas de Transporte de Membrana/genética , Paromomicina/farmacología
8.
Pathogens ; 10(9)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34578226

RESUMEN

Visceral leishmaniasis (VL), mainly caused by the Leishmania donovani parasitic infection, constitutes a potentially fatal disease, for which treatment is primarily dependent on chemotherapy. The emergence of a resistant parasite towards current antileishmanial agents and increasing reports of relapses are the major concerns. Detailed research on the molecular interaction at the host-parasite interface may provide the identification of the parasite and the host-related factors operating during disease development. Genomic and proteomic studies highlighted several essential secretory and cytosolic proteins that play vital roles during Leishmania pathogenesis. The aim of this study was to identify membrane proteins from the Leishmania donovani parasite and the host macrophage that interact with each other using 2-DE/MALDI-TOF/MS. We identified membrane proteins including activated protein C kinase, peroxidoxin, small myristoylated protein 1 (SMP-1), and cytochrome C oxidase from the parasite, while identifying filamin A interacting protein 1(FILIP1) and ß-actin from macrophages. We further investigated parasite replication and persistence within macrophages following the macrophage-amastigote model in the presence or absence of withaferin (WA), an inhibitor of activated C kinase. WA significantly reduced Leishmania donovani replication within host macrophages. This study sheds light on the important interacting proteins for parasite proliferation and virulence, and the establishment of infection within host cells, which can be targeted further to develop a strategy for chemotherapeutic intervention.

9.
Indian J Dermatol Venereol Leprol ; 87(4): 491-497, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34219438

RESUMEN

BACKGROUND: Sensitive and definitive diagnostic tests are required for timely treatment of leprosy and to control its transmission. AIM: In the present study, we report the development of loop-mediated isothermal amplification assay using six primers targeting the RLEP gene sequence uniquely present in Mycobacterium leprae. METHODS: Tissue punch samples (n = 50) and slit aspirates (n = 50) from confirmed cases of leprosy (M. leprae positive by quantitative polymerase chain reaction), reporting at the Department of Dermatology, Safdarjung Hospital, New Delhi, were analyzed using newly developed closed tube loop-mediated isothermal amplification assay. The sensitivity and specificity; positive predictive value, negative predictive value and accuracy were calculated using MedCalc statistical software. RESULTS: The loop-mediated isothermal amplification assay specifically amplified M. leprae genomic DNA with an analytical sensitivity of 100 fg. About 47 Out of the 50 quantitative polymerase chain reactions confirmed M. leprae positive tissue samples, 47 were positive by loop-mediated isothermal amplification assay (sensitivity 94%; 95% confidence interval 83.5%-98.8%) while only 31/50 were positive by histopathology (sensitivity 62%; 95% confidence interval 47.2%-75.4%) . Using slit aspirate samples of these 50 patients, 42 were positive by both quantitative polymerase chain reaction and loop-mediated isothermal amplification assay (sensitivity 84%; 95% confidence interval 70.9%-92.8%) while only 23/50 (sensitivity 46%; 95% confidence interval 31.8%-60.7%) were positive by microscopy. LIMITATIONS: In the present study, the leprosy patient cohort was not uniform, as it comprised a lower number of paucibacillary cases (22%) compared to multibacillary (78%) cases. CONCLUSION: Loop-mediated isothermal amplification assay established here provides a rapid and accurate diagnostic test for leprosy in terms of sensitivity and specificity. The assay is simple to perform in comparison with other molecular techniques (polymerase chain reaction/quantitative polymerase chain reaction) and has potential for field applicability.


Asunto(s)
Lepra/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium leprae/genética , Mycobacterium leprae/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Adolescente , Adulto , Anciano , ADN Bacteriano/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad , Adulto Joven
10.
J Clin Microbiol ; 59(9): e0013221, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34160275

RESUMEN

The countries in the Indian subcontinent have reported a dramatic decline in visceral leishmaniasis (VL) cases. However, the presence of the parasite reservoir in the form of post-kala-azar dermal leishmaniasis (PKDL), a dermal sequel of VL, is a hurdle in attaining VL elimination. Presently employed clinical specimens for the diagnosis of PKDL include skin biopsy specimens and slit skin smears. In this study, the use of blood as a clinical specimen was investigated in different manifestations of PKDL in India. This is a bicentric study (National Institute of Pathology, Indian Council of Medical Research [ICMR], New Delhi, and Institute of Medical Sciences [IMS], Banaras Hindu University, Varanasi), with 215 participants (120 PKDL patients and 95 controls). Highly sensitive quantitative real-time PCR (Q-PCR) and field-deployable loop-mediated isothermal amplification (LAMP) were employed using blood samples for diagnosis. Promising sensitivities of 77.50% (95% confidence interval [CI], 69.24 to 84.05%) for Q-PCR and 70.83% (95% CI, 62.16 to 78.22%) for LAMP were obtained for the diagnosis of PKDL. Further, enhanced sensitivities of 83.33% (95% CI, 71.28 to 90.98%) and 77.78% (95% CI, 65.06 to 86.80%) for Q-PCR and LAMP, respectively, were recorded for the detection of macular cases. The study revealed an inverse correlation between the parasite load estimated in slit and blood samples, thereby favoring the use of blood for the diagnosis of the macular variant, which may be missed due to scant parasite loads in the slit. This study is the first to propose the promising potential of blood as a clinical specimen for accurate diagnosis of PKDL, which would aid in fast-tracking VL elimination.


Asunto(s)
Leishmania donovani , Leishmaniasis Cutánea , Leishmaniasis Visceral , Humanos , India , Leishmania donovani/genética , Leishmaniasis Cutánea/diagnóstico , Leishmaniasis Visceral/diagnóstico , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Am J Trop Med Hyg ; 104(6): 2097-2107, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33872204

RESUMEN

Despite the dwindling number of visceral leishmaniasis (VL) cases in India, there is an urgent need for early and unequivocal diagnostics for controlling and preventing the reemergence of VL. Post-kala-azar dermal leishmaniasis (PKDL), a dermal sequela of VL, serves as a reservoir of the parasite. Diagnosis of PKDL, especially the macular variant, is challenging and poses impediment toward attainment of VL elimination. In this study, a real-time fluorimetry loop-mediated isothermal amplification (RealAmp) assay has been established for the detection of different clinical manifestations of leishmaniasis. The study included 150 leishmaniasis patients (25 VL, 25 cutaneous leishmaniasis [CL], and 100-PKDL) along with 120 controls. The assay demonstrated sensitivity of 100% (95% CI: 86.68-100) for diagnosis of VL and PKDL (95% CI: 79.61-100) and 96% (95% CI: 86.68-100) for CL with 100% specificity. Moreover, considering the cardinal role of PKDL, diagnosis using minimally invasive slit aspirate was explored, which demonstrated remarkable sensitivity of 96% (95% CI: 87.64-98.47). As a test of cure for PKDL, RealAmp successfully detected parasite in two of posttreatment cases who later reported relapse on follow-up. Also, direct sample lysis using slit aspirate was attempted in a small group that yielded sensitivity of 89% (95% CI: 67.20-96.90). RealAmp depicted excellent diagnostic accuracy in the diagnosis of leishmaniasis in concordance with the established SYBR Green I-based (Molecular Probes, Eugene, OR) visual loop-mediated isothermal amplification (LAMP) and the reference comparator real-time PCR. The study endorsed the employment of LAMP either as visual-LAMP or RealAmp for an accurate and expeditious diagnosis of PKDL and as a tool for assessment of cure.


Asunto(s)
Fluorometría/métodos , Leishmania donovani/genética , Leishmaniasis Cutánea/diagnóstico , Leishmaniasis Visceral/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Adolescente , Adulto , Anciano , Biopsia , Niño , Femenino , Fluorometría/normas , Humanos , India , Leishmaniasis/clasificación , Leishmaniasis/diagnóstico , Leishmaniasis/parasitología , Leishmaniasis Cutánea/parasitología , Leishmaniasis Visceral/parasitología , Masculino , Persona de Mediana Edad , Técnicas de Diagnóstico Molecular/normas , Técnicas de Amplificación de Ácido Nucleico/normas , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Piel/parasitología , Piel/patología , Adulto Joven
12.
Am J Trop Med Hyg ; 104(6): 2085-2090, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33872215

RESUMEN

Leprosy and post-kala-azar dermal leishmaniasis (PKDL) are co-endemic neglected tropical diseases often misdiagnosed because of close resemblance in their clinical manifestations. The test that aids in differential diagnosis of leprosy and PKDL would be useful in endemic areas. Here, we report development of a multiplex loop-mediated isothermal amplification (m-LAMP) assay for differential detection of Mycobacterium leprae and Leishmania donovani using a real-time fluorometer. The m-LAMP assay was rapid with a mean amplification time of 15 minutes, and analytical sensitivity of 1 fg for L. donovani and 100 fg for M. leprae. The distinct mean Tm values for M. leprae and L. donovani allowed differentiation of the two organisms in the m-LAMP assay. Diagnostic sensitivity of the assay was evaluated by using confirmed cases of leprosy (n = 40) and PKDL (n = 40) (tissue and slit aspirate samples). All the leprosy and PKDL samples used in this study were positive by organism-specific QPCR and loop-mediated isothermal amplification assays. The diagnostic sensitivity of the m-LAMP assay was 100% (95% CI: 91.2-100.0%) for detecting PKDL and 95% for leprosy (95% CI: 83.1-99.4%). Our m-LAMP assay was successfully used to detect both M. leprae and L. donovani in a patient coinfected with leprosy and macular PKDL. The m-LAMP assay is rapid, accurate, and applicable for differential diagnosis of leprosy versus PKDL, especially in endemic areas.


Asunto(s)
Leishmania donovani/genética , Leishmaniasis Cutánea/diagnóstico , Lepra/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium leprae/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Adolescente , Adulto , Anciano , Antígenos de Protozoos/genética , Diagnóstico Diferencial , Femenino , Humanos , Leishmaniasis Cutánea/parasitología , Lepra/microbiología , Masculino , Persona de Mediana Edad , Técnicas de Diagnóstico Molecular/economía , Técnicas de Diagnóstico Molecular/normas , Reacción en Cadena de la Polimerasa Multiplex/economía , Reacción en Cadena de la Polimerasa Multiplex/métodos , Reacción en Cadena de la Polimerasa Multiplex/normas , Técnicas de Amplificación de Ácido Nucleico/economía , Técnicas de Amplificación de Ácido Nucleico/normas , Adulto Joven
13.
Genes (Basel) ; 11(11)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33213096

RESUMEN

Current therapy for visceral leishmaniasis (VL), compromised by drug resistance, toxicity, and high cost, demands for more effective, safer, and low-cost drugs. Artemisinin has been found to be an effectual drug alternative in experimental models of leishmaniasis. Comparative genome and transcriptome analysis of in vitro-adapted artesunate-resistant (K133AS-R) and -sensitive wild-type (K133WT) Leishmania donovani parasites was carried out using next-generation sequencing and single-color DNA microarray technology, respectively, to identify genes and interlinked pathways contributing to drug resistance. Whole-genome sequence analysis of K133WT vs. K133AS-R parasites revealed substantial variation among the two and identified 240 single nucleotide polymorphisms (SNPs), 237 insertion deletions (InDels), 616 copy number variations (CNVs) (377 deletions and 239 duplications), and trisomy of chromosome 12 in K133AS-R parasites. Transcriptome analysis revealed differential expression of 208 genes (fold change ≥ 2) in K133AS-R parasites. Functional categorization and analysis of modulated genes of interlinked pathways pointed out plausible adaptations in K133AS-R parasites, such as (i) a dependency on lipid and amino acid metabolism for generating energy, (ii) reduced DNA and protein synthesis leading to parasites in the quiescence state, and (iii) active drug efflux. The upregulated expression of cathepsin-L like protease, amastin-like surface protein, and amino acid transporter and downregulated expression of the gene encoding ABCG2, pteridine receptor, adenylatecyclase-type receptor, phosphoaceylglucosamine mutase, and certain hypothetical proteins are concordant with genomic alterations suggesting their potential role in drug resistance. The study provided an understanding of the molecular basis linked to artemisinin resistance in Leishmania parasites, which may be advantageous for safeguarding this drug for future use.


Asunto(s)
Antiprotozoarios/farmacología , Resistencia a Medicamentos/genética , Leishmania donovani/efectos de los fármacos , Leishmania donovani/genética , Animales , Acuagliceroporinas/genética , Acuagliceroporinas/metabolismo , Artemisininas/farmacología , Artesunato/farmacología , Cromosomas , Resistencia a Medicamentos/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Frecuencia de los Genes , Genoma de Protozoos , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Leishmaniasis Visceral/parasitología , Ratones , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Reproducibilidad de los Resultados , Secuenciación Completa del Genoma
14.
Indian J Dermatol ; 65(6): 465-472, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33487701

RESUMEN

Post kala-azar dermal leishmaniasis (PKDL), a clinical sequela of visceral leishmaniasis (VL), plays a critical role in the anthroponotic transmission of VL, particularly in the Indian subcontinent (ISC). The early, accurate, and feasible diagnosis of PKDL is essential for the attainment and sustenance of VL elimination goal in ISC. PKDL poses a stumbling block for this goal, considering the heterogeneity presented with regard to time after cure of VL and onset of PKDL, chronicity, and clinical variations. In most of the endemic regions the diagnosis is based on clinical examination, previous history of VL, by ruling out other disorders, and by the response to treatment. The conventional microscopic examination involving the demonstration of Leishman-Donovan bodies (LDB) in macrophages is pathognomonic, however, the method faces constraints in terms of being invasive, less sensitive, technically demanding, and difficult to be applied in field conditions. Serological evidences are of limited use because antileishmanial antibodies remain positive for years after VL treatment. Molecular tools such as PCR, nested-PCR, Q-PCR overcome these constraints and have become increasingly popular due to their high sensitivity and specificity along with their applicability in diverse clinical samples. Molecular methods not only play a key role in early detection but also provide quantification and monitoring of treatment effectiveness. NCBI PubMed search tool was used for locating, selecting, and extracting research articles pertinent for this review article by using various related terminologies on the molecular diagnosis of leishmaniasis.

15.
J Infect Dis ; 221(4): 608-617, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31854451

RESUMEN

BACKGROUND: No satisfactory canonical treatment is available for post-kala-azar dermal leishmaniasis (PKDL), clinical sequela of visceral leishmaniasis. Confined treatment options and substantial increase in relapse rate after miltefosine (MIL) treatment warrant the need to adapt resilient combination therapies. In this study, we assessed the safety and efficacy of combination therapy using liposomal amphotericin B (LAmB) and MIL for treating PKDL. METHODS: Thirty-two PKDL patients, confirmed by microscopy or quantitative polymerase chain reaction (qPCR), were included in the study. An equal number of cases (n = 16) were put on MIL monotherapy (100 mg/day for 90 days) or MIL and LAmB combination for 45 days (3 injections of LAmB, 5 mg/kg body weight, and 100 mg/day MIL). Parasite load in slit aspirate was monitored using qPCR. RESULTS: Patients treated with combination therapy demonstrated a rapid decline in parasite load and achieved 100% cure, with no reports of relapse. Those treated with MIL monotherapy attained clinical cure with a gradual decrease in parasite load; however, 25% relapsed within 18 months of follow-up. CONCLUSIONS: Liposomal amphotericin B and MIL combination for treating PKDL is efficacious and safe, with high tolerability. Furthermore, this study established the utility of minimally invasive slit aspirate method for monitoring of parasite load and assessment of cure in PKDL.


Asunto(s)
Anfotericina B/administración & dosificación , Anfotericina B/uso terapéutico , Antiprotozoarios/uso terapéutico , Leishmania donovani/genética , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Visceral/tratamiento farmacológico , Fosforilcolina/análogos & derivados , Adolescente , Adulto , Anfotericina B/efectos adversos , Antiprotozoarios/efectos adversos , Niño , ADN Protozoario/genética , Quimioterapia Combinada , Femenino , Humanos , Leishmaniasis Cutánea/parasitología , Leishmaniasis Visceral/parasitología , Liposomas , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Carga de Parásitos , Fosforilcolina/efectos adversos , Fosforilcolina/uso terapéutico , Reacción en Cadena en Tiempo Real de la Polimerasa , Recurrencia , Resultado del Tratamiento , Adulto Joven
16.
J Biomol Struct Dyn ; 38(15): 4449-4460, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31625467

RESUMEN

Paromomycin, an aminoglycoside antibiotic, is an effective treatment for VL (visceral leishmaniasis) in India. The modification of aminoglycoside antibiotics by enzymes such as aminoglycoside acetyltransferases is the predominant mechanism of resistance to antibiotics in bacterial system. In the present study, we identified and characterized LdATLP (an acetyltransferase-like protein) and elucidated its role in paromomycin resistance in Leishmania donovani. Gene encoding LdATLP was consistently up-regulated (>2fold) in three distinct paromomycin resistant in comparison with sensitive parasites, although the gene sequence was identical in the two. In silico analysis revealed that LdATLP consisted of conserved GNAT (GCN5-related N-Acetyltransferase) domain which is characteristic of aminoglycoside N-acetyltransferases. Evolutionary relationship among LdATLP of Leishmania and aminoglycoside acetyltransferases of bacteria was established by phylogenetic analysis. The 3D structure of LdATLP, predicted by ab-initio modeling, constituted 6 α-helices and 6 ß-sheets. A few residues, such as R175, R177, E196, R197, V198, V200, K202, R205, C206, D208, G210, R211, R215, A234, S237, S238, K239, D240, F241 and Y242 of GNAT domain were predicted to be present at active site. Molecular docking of LdATLP with paromomycin or indolicidin (broad spectrum inhibitor of aminoglycoside modifying enzymes), followed by molecular dynamics simulation of docked complex suggested that both paromomycin and indolicidin bind to LdATLP with comparable free energy of binding. In vitro studies revealed that in the presence of indolicidin, paromomycin resistant parasites exhibited reversion of phenotype into sensitive parasites with marked increase in paromomycin susceptibility, suggesting the role of LdATLP in paromomycin resistance.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antiprotozoarios , Leishmania donovani , Acetiltransferasas/genética , Antiprotozoarios/farmacología , Resistencia a Medicamentos/genética , India , Simulación del Acoplamiento Molecular , Paromomicina/farmacología , Filogenia
17.
Parasitol Res ; 118(9): 2705-2713, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31359134

RESUMEN

Artemisinin, extracted from a medicinal herb Artemisia annua, is widely used to treat malaria and has shown potent anticancer activity. Artemisinin has been found to be effective against experimental visceral and cutaneous leishmaniasis. Despite extensive research to understand the complex mechanism of resistance to artemisinin, several questions remain unanswered. The artesunate (ART)-resistant line of Leishmania donovani was selected and cellular mechanisms associated with resistance to artemisinin were investigated. ART-resistant (AS-R) parasites showed reduced susceptibility towards ART both at promastigote and amastigote stage compared with ART sensitive (WT) parasites. WT and AS-R parasites were both more susceptible to ART at the early log phase of growth compared with late log phase. AS-R parasites were more infective to the host macrophages (p < 0.05). Evaluation of parasites' tolerance towards host microbicidal mechanisms revealed that AS-R parasites were more tolerant to complement-mediated lysis and nitrosative stress. ROS levels were modulated in presence of ART in AS-R parasites infected macrophages. Interestingly, infection of macrophages by AS-R parasites led to modulated levels of host interleukins, IL-2 and IL-10, in addition to nitric oxide. Additionally, AS-R parasites showed upregulated expression of genes of unfolded protein response pathway including methyltransferase domain-containing protein (HSP40) and flagellar attachment zone protein (prefoldin), that are reported to be associated with ART resistance in Plasmodium falciparum malaria. This study presents in vitro model of artemisinin-resistant Leishmania parasite and cellular mechanisms associated with ART resistance in Leishmania.


Asunto(s)
Antiprotozoarios/administración & dosificación , Artemisininas/administración & dosificación , Leishmania donovani/efectos de los fármacos , Leishmaniasis Visceral/genética , Leishmaniasis Visceral/inmunología , Extractos Vegetales/administración & dosificación , Respuesta de Proteína Desplegada/efectos de los fármacos , Animales , Artemisia annua/química , Artesunato/administración & dosificación , Femenino , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/inmunología , Interacciones Huésped-Parásitos , Humanos , Interleucina-10/genética , Interleucina-10/inmunología , Leishmania donovani/crecimiento & desarrollo , Leishmaniasis Visceral/parasitología , Leishmaniasis Visceral/fisiopatología , Macrófagos/inmunología , Ratones Endogámicos BALB C
18.
PLoS Negl Trop Dis ; 12(11): e0006922, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30439953

RESUMEN

BACKGROUND: The World Health Organization has targeted elimination of visceral leishmaniasis (VL) in the Indian subcontinent (ISC) by 2020. Despite distinctive decline seen in the number of VL cases in ISC, there is still a quest for development of a diagnostic test which has the utility for detection of active infection and relapse cases and as a test of cure. The present study validated the sensitivity and specificity of SYBR Green I based closed tube LAMP assay reported by us for diagnosis of VL. METHODOLOGY: The validation study was carried out at two endemic sites in India, located at Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna and Institute of Medical Sciences (IMS), Banaras Hindu University (BHU), Varanasi. Standard operating protocols were provided at the two sites for applying LAMP assay on confirmed VL cases. The diagnostic accuracy of LAMP assay was evaluated by Receiver operator curve (ROC) analysis. Furthermore, a simplified LAMP assay based on direct blood lysis, DBL-LAMP, was developed and verified for its diagnostic accuracy. PRINCIPAL FINDINGS: A total of 267 eligible participants were included in the study which comprised of 179 VL cases and 88 controls. Sensitivity and specificity of the LAMP assay were 98.32% (95% C.I- 95.2-99.7%) and 96.59% (95% C.I.-90.4-99.3%), respectively. ROC curve analysis depicted no significant difference between area under curve (AUCROC) for LAMP assay and rK39 RDT, indicative of LAMP as an excellent diagnostic test. DBL-LAMP assay, performed on 67 VL and 100 control samples, yielded a sensitivity of 93.05% (95% C.I- 84.75-97%) and specificity of 100% (95% C.I.- 96.30-100%). CONCLUSIONS/SIGNIFICANCE: The validated closed tube LAMP for diagnosis of VL will provide impetus to the ongoing VL elimination programme in ISC. The assay based on direct blood lysis promotes its scope for application in field settings by further reducing time and cost.


Asunto(s)
Sangre/parasitología , Leishmania donovani/aislamiento & purificación , Leishmaniasis Visceral/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Adolescente , Adulto , Anciano , Benzotiazoles , Niño , Diaminas , Femenino , Humanos , India , Leishmania donovani/genética , Leishmaniasis Visceral/sangre , Leishmaniasis Visceral/parasitología , Masculino , Persona de Mediana Edad , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Compuestos Orgánicos/química , Quinolinas , Sensibilidad y Especificidad , Adulto Joven
19.
Artículo en Inglés | MEDLINE | ID: mdl-30297367

RESUMEN

The oral drug miltefosine (MIL) was introduced in the Indian subcontinent in the year 2002 for the treatment of visceral leishmaniasis (VL). However, recent reports on its declining efficacy and increasing relapse rates pose a serious concern. An understanding of the factors contributing to MIL tolerance in Leishmania parasites is critical. In the present study, we assessed the role of the lipase precursor-like protein (Lip) in conferring tolerance to miltefosine by episomally overexpressing Lip in Leishmania donovani (LdLip++). We observed a significant increase (∼3-fold) in the MIL 50% inhibitory concentration (IC50) at both the promastigote (3.90 ± 0.68 µM; P < 0.05) and intracellular amastigote (9.10 ± 0.60 µM; P < 0.05) stages compared to the wild-type counterpart (LdNeo) (MIL IC50s of 1.49 ± 0.20 µM at the promastigote stage and 3.95 ± 0.45 µM at the amastigote stage). LdLip++ parasites exhibited significantly (P < 0.05) increased infectivity to host macrophages and increased metacyclogenesis and tolerance to MIL-induced oxidative stress. The susceptibility of LdLip++ to other antileishmanial drugs (sodium antimony gluconate and amphotericin B) remained unchanged. In comparison to LdNeo, the LdLip++ parasites elicited high host interleukin-10 (IL-10) cytokine expression levels (1.6-fold; P < 0.05) with reduced expression of the cytokine tumor necrosis factor alpha (TNF-α) (1.5-fold; P < 0.05), leading to a significantly (P < 0.01) increased ratio of IL-10/TNF-α. The above-described findings suggest a role of lipase precursor-like protein in conferring tolerance to the oral antileishmanial drug MIL in L. donovani parasites.


Asunto(s)
Interacciones Huésped-Patógeno/efectos de los fármacos , Leishmania donovani/efectos de los fármacos , Leishmania donovani/patogenicidad , Fosforilcolina/análogos & derivados , Proteínas Protozoarias/metabolismo , Animales , Antiprotozoarios/farmacología , Citocinas/metabolismo , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Femenino , Interacciones Huésped-Patógeno/fisiología , Inflamación/metabolismo , Inflamación/parasitología , Leishmania donovani/genética , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Lipasa/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Ratones Endogámicos BALB C , Estrés Oxidativo , Fosforilcolina/farmacología
20.
Parasitol Res ; 117(10): 3215-3228, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30109416

RESUMEN

The morphological and biochemical alterations between the two life stages of Leishmania are governed by stage-regulated expression of several genes. Amastigote-specific genes are believed to have a role in the survival and replication of the parasite in the hostile environment of the mammalian host. Previously, we have reported the upregulated expression of A1 gene (LdA1) at the amastigote stage at RNA level. In the present study, we have further characterized LdA1, in order to understand its role in Leishmania. Sequence homology search revealed that LdA1 is unique to the Leishmania genus. Sequence- and structure-level functional annotations predicted the involvement of LdA1 in a range of biological processes critical for survival of the parasites. Western blot confirmed the upregulated expression of LdA1 at the protein level at the amastigote stage. Overexpression of LdA1 in Leishmania did not affect its growth, phenotype, or infectivity. Attempts to generate null mutants of LdA1 by homologous recombination were not successful. Repeated inability to create null mutants of LdA1 was suggestive of gene essentiality. Mutant parasites with a single allele deletion of LdA1 (LdA1+/-) showed reduction in motility, size, and growth rate at both the life stages in vitro, which was restored following gene add-back by episomal expression of LdA1 in mutant parasites. Although LdA1+/- parasites were able to infect macrophages ex vivo, their capacity to survive inside macrophages was reduced significantly (P < 0.01) beyond 72 h of infection. In conclusion, LdA1 is a Leishmania-specific gene having upregulated expression at the amastigote stage and is important for survival of Leishmania parasite.


Asunto(s)
Leishmania/crecimiento & desarrollo , Leishmania/genética , Leishmaniasis/parasitología , Proteínas Protozoarias/genética , Animales , Western Blotting , Humanos , Leishmania/metabolismo , Estadios del Ciclo de Vida , Macrófagos/parasitología , Proteínas Protozoarias/metabolismo , Activación Transcripcional , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...